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ABSTRACT The recycling of end-of-life (EOL) products is the primary link in the remanufacturing
process. EOL products rely on disassembly lines to retain valuable parts for remanufacturing. In this
work, a disassembly line balancing model is established based on an AND/OR graph. It takes precedence
relation, cycle time restriction, failure risk, and time uncertainty into consideration and aims to maximize
the dismantling profit and minimize the energy consumption. Then, a multi-objective discrete bat optimizer
based on Pareto rules is designed according to the problem model, and a precedence preserving crossover
operator, a single point mutation operator and a 2-optimization operator are used to simulate the flight
strategy of bats to satisfy the search of feasible solutions. To speed up the convergence, we propose an
elite strategy to maintain the non-dominate solutions in the external files. By decomposing products of
different sizes and analyzing the experimental results, the proposed algorithm is evaluated with the existing
multi-objective discrete gray wolf optimizer, artificial bee colony optimizer, non-dominated sorting genetic
algorithm II, and multi-objective evolutionary algorithm based on decomposition. The effectiveness of the
proposed algorithm in solving this problem is verified.

INDEX TERMS End-of-life products, remanufacturing, disassembly line balancing, AND/OR graph,
precedence relation, multi-objective, discrete bat algorithm.

I. INTRODUCTION

The rapid development of economy and automatic man-
ufacturing  industry  increases  people’s   requirements  for

of new products, reducing the need for virgin materials and
ultimately conserving natural resources. Facing the waste of
mass production, a disassembly line can realize standardized,
automatic, and efficient disassembly of mechanical and elec-
trical products, which has huge economic benefits.

The DLB problem refers to a set of disassembly operation,
and there is precedence relation between each job operation.
On the premise of not exceeding a given cycle time and
meeting operation constraints. Disassembly operations are
reasonably allocated to workstations, so that the number of
workstations, idle time of each workstation, damage of parts,
and demand index is as little as possible, and the disassembly
efficiency is as high as possible [7]. Each workstation on the
disassembly line has reserved a certain amount of idle time
to ensure that the operation time does not exceed the cycle

diversified a nd p ersonalized p roducts [1–6]. W hile enter-
prises produce large quantity of products every day, a great 
number of end-of life (EOL) products are weeded out as 
well, which leads to a huge waste of natural resource and 
even seriously threatens the healthy and ecological environ-
ment. To solve these problems, it is important to recycle 
and reuse EOL products, which can be done through dis-
assembly processes. Proper and efficient d isassembly also 
helps reduce carbon emissions and combat climate change 
by reducing the need for new manufacturing and reducing 
the amount of waste sent to landfills. Furthermore, recycled 
materials from EOL products can be used in the production
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time, and the disassembly line balance plan needs to have a
certain ability to cope with fluctuations in operation time.

Similar to assembly lines, the disassembly production
lines also have the need of line balancing [8]. Gungor et
al. formally propose the disassembly line balancing (DLB)
problem for the first time to minimize the total idle time.
A multi-objective model of complete disassembly is estab-
lished with the optimization objectives for maximizing profit
and minimizing disassembly hazardous, high demand parts,
and direction changes. Subsequently, many scholars have
conducted further studies on DLB problem [9, 10]. The
main purpose is to get more valuable components with less
consumption, which needs to assign tasks to disassembly
workstations and uses fewer workstations while satisfying all
constraints. Considering the interaction between disassembly
tasks [11]. Yin et al. use the improved discrete hummingbird
algorithm to solve the disassembly line balance problem and
simultaneously optimize the number of workstations, total
disassembly time, idle balance index and the number of
disassembly tools [12]. Bentaha et al. [13] consider the ran-
domness of disassembly operation time in the DLB problem,
a stochastic programming model is established to maximize
disassembly revenue, and an accurate solution method is
proposed to solve it. Ren et al. [14] use a 2-optimal algorithm
to solve the DLB problem based on multi-criteria decision
making with interdependent weights.

In the actual disassembly process, every step of disassem-
bly may occur unexpected situations, leading to the change
of various factors in the disassembly link. In the disassembly
process, it is difficult to predict the scrap of the disassembled
parts, which is an important factor leading to the disassembly
failure. It is also affected by the skill level of workers. If
such a situation occurs in this process, a series of changes
will occur in the disassembly process. DLB problem is pro-
posed as a solution with the main idea that in the event of
disassembly failure, the components or subsystems that need
to be retained can be combined into other feasible tasks or
products to reduce loss and waste. In terms of disassembly
failure, Gungor and Gupta [15] first proposed DLBP in 2001,
the paper considered a case of disassembly failure. The paper
pointed out that the task failed due to the priority constraints
of the task and the defects of the EOL product, which then led
to a series of complex cases such as prohibiting disassembly
of part or all remaining parts. This paper considers a series
of changes in the disassembly process, gives a certain proba-
bility of failure for each disassembly process, and calculates
the failure cost in the disassembly process, according to the
failure cost judge the pros and cons of the solution.

McGovern Gupta [16] prove that the DLB problem is an
NP-hard problem. Koc et al. [17] use precise formulas to
solve it. However, most accurate methods are not suitable
for dealing with large scale DLB problems. At present, the
DLB problem solving methods mainly include the heuristic
methods, mathematical programming methods, and intelli-
gent optimization algorithms. In recent years, many studies
focus on intelligent optimization algorithms, such as genetic

algorithm (GA) [16] , AC algorithm [11], migratory bird
optimization algorithm (MB) [18], grey wolf algorithm (GW)
[19], and artificial bee colony algorithm (ABC) [20].

Bat algorithm (BA) is a new heuristic search algorithm
proposed by Yang in 2010 [21], which also belongs to swarm
intelligence algorithms. Its mechanism is to simulate the
echolocation principle of bats. Compared with other algo-
rithms. It is far superior to other algorithms in terms of accu-
racy and effectiveness. It has fewer parameters to be adjusted.
Based on these advantages, many scholars have applied it
to solve the optimization problems such as shop scheduling
[22], wind power dispatch [23, 24], Wireless sensor network
optimization, and image classification [25]. This work tries
to use BA to solve a discrete and stochastic multi-objective
disassembly-line-balancing problem (SMDP).

Considering the optimization objectives of high disassem-
bly profit and low energy consumption, this paper constructs
a multi-objective model for the DLB problem. A bat opti-
mization algorithm with Pareto solution set is proposed. By
establishing the correspondence between disassembly opera-
tion and iterative flying search, a crowd-distance mechanism
is proposed that can ensure the diversity of solutions. The
contributions of the paper are summarized as follows:

1) It formulates a SMDP model based on an AND/OR
graph with disassembly failure risk under considera-
tion. The objectives are to maximize disassembly profit
and minimize energy consumption.

2) It designs a multi-objective discrete bat optimization
(MDBO) algorithm combining with a stochastic simu-
lation approach to handle the proposed problem. In this
algorithm, a quadratic-vector list structure is designed
to represent a solution. Based on the flight mechanism
of the basic BA, a new individual generation operator
and election operator are proposed to search for candi-
date solutions from the solution space.

3) The proposed algorithm is tested on several cases to
verify its performance. Four popular multi-objective
optimization algorithms, i.e., multi-objective discrete
grey wolf optimizer (MDGWO), multi-objective dis-
crete artificial bee colony algorithm (MDABC), non-
dominated sorting genetic algorithm II (NSGA-II) [26]
, and multi-objective evolutionary algorithm based on
decomposition (MOEA/D) [27], are used for compari-
son.

The rest of this paper is organized as follows. The consid-
ered problem is formulated in Section II. Section III describes
the MDBO algorithm. Section IV carries out simulation ex-
periments and discusses the obtained results. Finally, Section
V concludes this paper and discusses future work.

II. PROBLEM DESCRIPTION
A. PROBLEM STATEMENT
The disassembly of EOL products can be regarded as a
recursive idea, that is, the disassembled components can
be understood as a complete EOL product. The AND/OR
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FIGURE 1. Ballpoint pen.

<1>1-6

<2>1-5 <15>6 <14>5 <3>1,2,3,4,6

<14>5 <4>1,2,3,4 <15>6

<8>1,5 <6>2,3,4 <10>1 <5>1,2,6 <9>3,4

<10>1 <14>5 <11>2 <9>3,4 <7>1,2 <15>6

<12>3 <13>4 <10>1 <11>2

1 2

3 4

5

67

8

9

10

1112

13

B. QUESTION ASSUMPTIONS

In view of the characteristics of the DLBP, the following
assumptions are made.

1) The AND/OR graphs of EOL products to be disassem-
bled are known.

2) The precedence matrix P and incidence matrix D
among disassembly operations are known.

3) There are enough EOL products for disassembly.
4) Not all subassemblies can be completely disassembly.
5) The disassembly cost and energy consumption per unit

of time of each disassembly operation, and the setup
cost and setup energy consumption per unit of time
among disassembly operations are known.

6) The recycling value of subassemblies is given.
7) The operating time of the workstation is not greater

than its cycle time.

C. NOTION DEFINITION
i Subassembly index, i ∈ {1, 2, ..., N}.,where N denotes

the number of subassemblies in a product.
j, k operation indices j, k ∈ {0, 1, 2, ..., J}., where J means

the number of operations in a product, and 0 is a virtual
operation.

l,m workstation indices j, k ∈ {1, 2, ...,M}., where M is
the number of workstations.

tj disassembly time of the disassembly operation j.
tjk setup time of operation k if immediately follows opera-

tion j.
cj cost per unit of time of performing the disassembly

operation j.
cjk disassembly tool set-up cost per unit of time of opera-

tion k if it immediately follows operation j.
ej energy consumption per unit of time of operation j.
ejk disassembly tool set-up energy consumption per unit of

time of operation k if it immediately follows operation
j

el energy consumption of the l-th workstation operation.
cl cost of the l-th workstation operation.
vi recycling/reuse value of subassembly i in a product.
qjk failure probability of operation k if it immediately fol-

lows operation j.
Tl the fixed cycle time of the workstation.
θ the probability that the failure cost of a disassembly

process satisfies the required minimum probability that
the failure cost of a disassembly process is less than or
equal to its maximum value.

F̂ maximum failure cost of a disassembly process.
P disassembly-precedence matrix of a given AND/OR

graph.
D disassembly-incidence matrix of a given AND/OR

graph.
pjk an element in the j-th row and k-th column of P.
dij an element in the i-th row and j-th column of D.

FIGURE 2. Ballpoint pen’s AND/OR graph.

graph [17] adopts the idea of divide-and-conquer, so it is 
very suitable to use the AND/OR graph to represent the re-
lationship between disassembly tasks and components [28]. 
Fig. 1 shows a schematic diagram of a ballpoint pen. Fig. 
2 shows the AND/OR graph. The starting number in the 
rectangle represents the component number, and the inferior 
arc emitted by the rectangle represents the operation. The 
relationship between components and operations is repre-
sented by “AND”. As can be seen from Fig. 2 , there are two 
operations in the figure, operation “1” and operation “2”. The 
relationship between the two operations is “OR”, because 
the two operations conflicts w ith e ach o ther a nd c annot be 
executed at the same time.

This paper combines with the demolition of waste ball-
point pen dismantling reality. While considering the above 
optimization objectives, to find an optimal disassembly op-
eration assignment scheme. Under conditions of multiple 
constraints, realize the collaborative optimization of multiple 
goals.

Fig. 3 shows the disassembly line layout, which describes 
the process of disassembly of a ballpoint pen on the work-
station. Rectangles represent subassembly and triangles rep-
resent disassembly operations. We can see that subassembly 
⟨1, 3⟩ can get part ⟨14⟩ after operation 2 and 11, subassembly 
⟨5⟩can get part ⟨15⟩ after operation 6, subassembly ⟨7⟩ can 
get part ⟨10, 11⟩ after operation 8. The DLB problem is very 
different from the assembly problem, and it involves a variety 
of complex factors. Therefore, when modeling the DLB 
problem in this work, the above complex factors are idealized 
from the perspective of applicability. In combination with 
the characteristics of the disassembly line. To facilitate the 
establishment of the model, this paper makes the following 
assumptions:
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FIGURE 3. Disassembly line layout.

xj=
{
1, if disassembly operation j is performed.

0,otherwise.

ul =

{
1, if workstation is used.

0, otherwise.

yjk =

1, if disassembly operation k is performed
after operation j .

0, otherwise.

zjl =

1, if disassembly operation j is assigned
to the l − th workstation.

0, otherwise.

D. MATHEMATICAL MODEL

max f1 =

J∑
j=1

N∑
i=1

dijvixj −
J∑

j=1

cjtjxj−

J∑
j=0

J∑
k=1

cjktjkyjk −
M∑
l=1

clul

(1)

min f2 =

J∑
j=1

ejtjxj +

J∑
j=0

J∑
k=1

ejktjkyjk −
M∑
l=1

elul (2)

s.t.

J∑
j=1

xj ≥ 1. (3)

xk =

J∑
j=1

yjk, ∀k ∈ 1, 2, · · · , J. (4)

M∑
l=1

zjl ≤ 1, ∀j ∈ 1, 2, · · · , J. (5)

J∑
j=1

zjl ≥ 1, ∀l ∈ 1, 2, · · · ,M. (6)

M∑
l=1

lzjl ≤
M∑

m=1

mzkm, ∀pjk = 1, ∀j, k ∈ 1, 2, · · · , J. (7)

M∑
l=1

lzjl +

M∑
m=1

mzkm ≤ 1, ∀pjk = −1, ∀j, k ∈ 1, 2, · · · , J.

(8)

J∑
j=0

J∑
k=1

(zkltkxk + zjltjkyjk ≤ Tl, ∀l ∈ 1, 2, · · · ,M. (9)

Pr{
J∑

j=0

J∑
k=1

(zkltkxk + zjltjkyjk ≤ Tl} ≥ θ,∀l ∈ 1, 2, · · · ,M.

(10)
Objective function (1) is to maximize expected disas-

sembly profit, which equals the total disassembly revenue
minus total disassembly cost. The latter includes the total
disassembly cost of each disassembly operation, the total
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disassembly setup cost of adjacent disassembly operations,
the cost of switch-on workstation, and the failure cost. (2) is
to minimize expected energy consumption, which includes
the total energy consumption of disassembly operations,
the total setup energy consumption of adjacent operations
in the product, and the energy consumption of switched-
on workstations. (3) indicates that at least one disassembly
operation is being performed during the disassembly. (4) en-
sures that the same disassembly operation is not repeated (5)
ensures that a disassembly operation can be assigned to one
workstation at most once. (6) ensures that the workstation
that is open is assigned at least one disassembly operation.
(7) means that the feasible disassembly sequence meets the
precedence relation constraints. (8) means that the feasible
disassembly sequence meets conflicted relation constraints.
(9) ensures that the workstation execution time is within the
set execution cycle. (10) requires that the probability for the
failure cost of a disassembly process being less than or equal
to its maximum failure cost is greater than a preset value θ >
0.

III. IMPROVED BAT ALGORITHM
A. BAT ALGORITHM
BA is a kind of swarm intelligence algorithm, which is an
optimization technology based on iteration. It relies on the
free flight of bats and the flight near the optimal solution to
find the optimal solution. Compared with other algorithms, it
has the advantages of fast convergence speed, high accuracy,
and fewer algorithm parameters.

B. ENCODING
The DLB problem is a kind of discrete combinatorial op-
timization problem. Combining the characteristics of com-
binatorial optimization problem and model, a binary-vector
list is designed to represent the solution structure. The spe-
cific encoding method is shown in Fig. 4. According to the
DLB problem’s characteristics, we encode the solution as
π = (π1, π2). π1 = (o1, o2, . . . , oj) is a decimal integer
string whose length is the sum of all disassembly operations
of a product. Each position of π1 represents a disassembly
operation, denoted by oj . π2 = (w1, w2, . . . , wJ) is a
vector of binary elements indicating whether the task at the
corresponding position has been disassembled. If wj = 1, the
operation in the j−th position in π1 is performed, otherwise
wj = 0. Here, each disassembly sequence represents the solu-
tion of the problem, and the union of disassembly sequences
constitutes a population. For example, Fig. 4 indicates that
the disassembly sequence is 4-8-5-3-10.

C. DECODING
The process of decoding is the process of restoring the
solution to a specific allocation scheme. Assign disassembly
operations to workstations and determine which operations
are assigned to which workstations. Each workstation must
meet periodic constraints when assigning operations. The
detailed steps of decoding are as follows:

1) Set k = 1.
2) Determine whether operation k is performed. If xk = 1

and k = kf , where, kf represents the first operation in
the sequence, then switch-on a new workstation l and
let l = 1. Set the usage time Tld = 0 of workstation l, set
the Sl of operations assigned to the l−th workstation to
be empty. If xk = 1 and k ̸= kf , operation k performs
and continuue; otherwise, jump to Step 6

3) The operation transition time is added to Tld. Based
on the cycle time of the l−th workstation, if Tld >Tl,
continue to the next step; otherwise, go to Step 6.

4) Switch-on a new workstation and let l = l+ 1, Tld = 0.
5) The operation transition time is added to Tld.
6) The corresponding operation time is added to Tld. If

Tld >Tl, continue to the next step; otherwise, jump to
Step 9.

7) The operation transition time is added to Tld.
8) Put operation k into the sequence of the l−th worksta-

tion Sl.
9) If k ̸= J , set k = k + 1, repeat Steps 2 to 9; Otherwise,

end and get a feasible solution.

D. MONTE CARLO SIMULATION
In this paper, we use Monte Carlo simulation to solve
the objective function evaluation problem. It is a calcula-
tion method based on probability and statistical theory. It
solves various mathematical problems by constructing ran-
dom numbers that conform to certain rules. Random vari-
ables generated by various probability distributions are the
basic means of Monte Carlo simulation. The approximate
solution of the problem is obtained by means of statistical
simulation or sampling, which is connected with a proba-
bility model. In this work, we simulate it randomly for 10
times to get the expected value of the objective function,
so that it is closer to the real solution of the problem. It is
generally divided into three steps as shown in the pseudocode
of Algorithm 1.

E. CALCULATION OF FITNESS
In the multi-objective optimization problem, the mutual re-
striction between each target may affect the other targets
while improving one target. Thus, for the multi-objective
optimization problem, its solution is usually a Pareto solution
set. The fitness here is expressed as a dominant relationship.
For a multi-objective minimization problem whose number
of optimized objectives is U , the solution x1 is denoted as
dominated by the solution x0 if the following relationship is
satisfied:{

fi(x0) ≤ fi(x1), ∀i ∈ {1, 2, ..., U}
fj(x0) < fj(x1), ∃j ∈ {1, 2, ..., U}

(11)

F. INITIALIZATION OF POPULATION
Pareto MDBO adopts N central positions in the iteration
process, each central position is regarded as an individual
bat. To solve this problem, multiple bat individuals constitute
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Algorithm 1 Monte Carlo simulation
Input: Disassembly time given by the individual and target

value of the model
Output: New individual target value

for i = 1; i < M ; i++ do
According to their stochastic distribution, generate a
sample, i.e., disassembly time tj of disassembly opera-
tions. Combine the mathematical model with the current
sample to calculate the solution’s target value and failure
cost

end for
M

′ ← ⌊θ ∗M⌋
find the M

′
-th largest sample

if (failure cost > F̂ ) then
return false

else
return f1, f2, fm samples of new individual t

end if

Algorithm 2 Pareto rule
Input: Individuals A, B, number of objectives n
Output: The dominant relationship between A and B

equal count, less count, greater count ← 0
for i = 1; i < n; i++ do

if A. value i equals B. value i then
equal count← equal count + 1

else if A. value i less B. value i then
less count← less count + 1

else
great count← great count + 1

end if
end for
if equal count == n then

A, B are the same.
else if equal count + less count == n and less count > 0
then

A ≺ B
else if equal count + less count == n and great count > 0
then

B ≺ A
else

There is no dominant relationship between A and B
end if

a population. Because of the complexity of the SMDP, the
sequence must satisfy the precedence constraint. The essence
of the initialization operation is the distribution operation of
the problem-solution space. The initialization of the popula-
tion is the initial solution of the population according to the
coding rules. In this work, the initial population is randomly
generated and the detailed steps are as follows.

1) Randomly generate a solution , i.e., π1, π2.
2) Adjust the disassembly sequence obtained in Step 1 ac-

cording to P to make the sequence meet the precedence

4 7 6 8 5 2 ... J

0 1 1 0 1 0 ... 0

 π1

π2π2

FIGURE 4. Encoding scheme.

constraint. If the disassembly operation oj is after ok
and pjk =1 in matrix P, then oj and ok are swapped,
continue to traverse the next operation.

3) Adjust the binary values in π2 based on matrix P
to meet the precedence relation between disassembly
operations of the product.

4) Adjust the binary values in π2 based on matrix P
to eliminate the conflict relation between disassembly
operations of the product.

G. INDIVIDUAL EVOLUTION

Bat optimizer is a kind of heuristic swarm intelligence
algorithm. It has been proven that BA has more obvious
advantages than other algorithms such as particle swarm al-
gorithm [29], simulated annealing algorithm [30], and firefly
algorithm [31], and there are not many parameters to be
adjusted. However, BA is mainly used to solve the functional
optimization problem in the continuous domain. In order to
solve the optimization problem in the discrete domain, the
BA must be redefined. In combination with the characteris-
tics of the BA, we use the Precedence Preserving Crossover
operator (PPX), Position-Based Mutation (PBM) operator,
and 2-optimization operator (2-OPT) to solve the disassem-
bly problem. In solving the DLB problem, population and
individual updates are as follows:

1) An individual is randomly selected in the current
Pareto solution set, and the individual and each indi-
vidual of the population use PPX operator and PBM
operator to generate child individuals, then, go to Step
3;

2) If the random number is greater than the pulse emis-
sivity Ri of bats, then the 2-OPT operator or PBM
operator is used to update random individuals for the
currently obtained optimal solution. then, go to Step 3;

3) Judge whether the newly generated child new domi-
nates the parent, and judge whether the loudness Ai is
less than the set parameter. If true, add the child new to
the population. Then, go to Step 4.

4) Perform a non-dominant order on the population.
5) The population is selected by using the ranking and

crowding distance. Then go to Step 6.
6) The solution is saved using the dominant relationship

and the external archive set V .

IV. EXPERIMENTS
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TABLE 1. THE RESULT OF INSTANCE ONE DISASSEMBLY SEQUENCE IS OBTAINED BY MDBO ALGORITHM PROGRAM.

Instance Disassembly sequence f1 f2 fc fm

1,2,4,8,14,15 275.1 861.0 35.2 2

1 1,2,3,6,10,17,11,20,18 427.8 1374.6 59.3 2

1,2,4,8,15,25,14,24,33,34,39,11,18,20,28 684.7 1965.2 57.7 3

2,10,4,15,23,7 572.0 781.9 22.8 1

2 2,10,4,15,22 496.1 612.4 16.8 1

2,10 231.1 274.3 9.2 1

2,4,13,8,10 186.8 555.4 26.0 1

3 2,4,5,7,10 277.2 700.2 31.9 1

2,4,5,7 216.9 637.5 21.9 1

TABLE 2. COMPARISON OF EXPERIMENTAL RESULTS OF INSTANCE ON FIVE ALGORITHMS IN C-METRIC.

Instance pop C1 t-test C2 t-test C3 t-test C4 t-test

1

100
0.7317

0.1236
+

0.5792

0.2544
+

0.8006

0.0629
+

0.7259

0.1090
+

120
0.7348

0.0926
+

0.6393

0.1866
+ 0.8573 +

0.7357

0.1200
+

150
0.7655

0.1137
+

0.5746

0.2166
+

0.7801

0.0907
+

0.7677

0.1039
+

2

100
0.6333

0.0666
+

0.4283

0.2249
+

0.7650

0.0499
+

0.5511

0.1666
+

120
0.5891

0.1083
+

0.4333

0.1833
+

0.7866

0.0333
+

0.4367

0.2083
+

150
0.6583

0.1166
+

0.4700

0.2416
+

0.7300

0.0583
+

0.5211

0.2249
+

3

100
0.4500

0.2575
+

0.4000

0.3441
∼

0.5708

0.1941
+

0.4938

0.3266
+

120
0.5716

0.2416
+

0.4158

0.2933
+

0.5233

0.2358
+

0.5200

0.2500
+

150
0.4808

0.2733
+

0.4366

0.2783
+

0.5750

0.1400
+

0.4136

0.3066
∼

and ballpoint pen (BP) [32]. An HD contains 63 subassem-
blies and 46 disassembly operations. An RS includes 29
subassemblies and 30 disassembly operations. There are 15
subassemblies in a BP and 13 disassembly operations. Multi-
objective algorithm has a variety of indicators to choose from
in evaluating the quality of solution set. General evaluation
indicators mainly combine the following three dimensions in
evaluating the quality of solution set.

1) Convergence evaluation:
When the solution set is closer to the real Pareto
frontier, the convergence of the solution set is better.

2) Uniformity evaluation:
The more uniform the distribution of individuals in the
solution set is, the better the uniformity of the solution
set is.

3) Extensive evaluation:

A. ALGORITHM AND INDEX

We compared the performance of the proposed algorithm 
that of NSGA-II, MDGWO, MDABC, and MOEA/D. The 
NSGA-II reduces the complexity of the algorithm by us-
ing the non-dominated sorting method, a fast, the conver-
gence of solution set good advantage, become other per-
formance benchmark multi-objective optimization algorithm. 
MOEA/D decomposes a multi-objective optimization prob-
lem into a single-objective optimization problem, which has 
the advantages of low computational complexity and high 
solving efficiency. M DGWO a nd M DABC a lgorithms, as 
meta-heuristic algorithms, have performed well in solving 
discrete optimization problems in recent years, so the above 
algorithms are selected to compare with MDBO.

Three products of different level of complexity are used 
for experiments: hammer drill (HD), radio set (RS) [32]
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TABLE 3. COMPARISON OF EXPERIMENTAL RESULTS OF INSTANCE ON FIVE ALGORITHMS IN IGD-METRIC.

Instance pop
MDBO MDGWO MDABC NSGA-II MOEA/D

mean&var t-test mean&var t-test mean&var t-test mean&var t-test mean&var t-test

1

100
0.0246

(0.0000)
null

0.0667

(0.0002)
+

0.0299

(0.0001)
+

0.0911

(0.0005)
+

0.0736

(0.0012)
+

120
0.0280

(0.0001)
null

0.0693

(0.0001)
+

0.0441

(0.0003)
+

0.0795

(0.0002)
+

0.0747

(0.0006)
+

150
0.0298

(0.0000)
null

0.0807

(0.0003)
+

0.0467

(0.0002)
+

0.0971

(0.0002)
+

0.0819

(0.0010)
+

2

100
0.0022

(0.0000)
null

0.0284

(0.0000)
+

0.0237

(0.0001)
+

0.0205

(0.0001)
+

0.0283

(0.0014)
+

120
0.0012

(0.0000)
null

0.0549

(0.0020)
+

0.0429

(0.0003)
+

0.0367

0.0004)
+

0.0323

(0.0007)
+

150
0.0012

(0.0000)
null

0.0461

(0.0007)
+

0.0377

(0.0003)
+

0.0370

(0.0003)
+

0.0438

(0.0012)
+

3

100
0.0156

(0.0001)
null

0.0267

(0.0002)
+

0.0175

(0.0001)
∼

0.0163

(0.0001)
∼

0.0416

(0.0004)
+

120
0.0046

(0.0000)
null

0.0167

(0.0004)
+

0.0142

(0.0000)
+

0.0057

(0.0000)
∼

0.0373

(0.0015)
+

150
0.0028

(0.0000)
null

0.0222

(0.0003)
+

0.0072

(0.0001)
+

0.0056

(0.0000)
∼

0.0357

(0.0006)
+

TABLE 4. COMPARISON OF EXPERIMENTAL RESULTS OF INSTANCE ON FIVE ALGORITHMS IN HV-METRIC.

Instance pop
MDBO MDGWO MDABC NSGA-II MOEA/D

mean&var t-test mean&var t-test mean&var t-test mean&var t-test mean&var t-test

100
0.5125

(0.0001)
0.0015

0.4562

(0.0004)
+

0.5040

(0.0003)
+

0.4289

(0.0004)
+

0.4468

(0.0015)
+

1 120
0.5534

(0.0001)
0.0017

0.4847

(0.0004)
+

0.5255

(0.0011)
+

0.4687

(0.0006)
+

0.4904

(0.0017)
+

150
0.5553

(0.0001)
0.0020

0.4805

(0.0006)
+

0.5278

(0.0005)
+

0.4549

(0.0005)
+

0.4905

(0.0020)
+

100
0.6664

(0.0000)
0.0024

0.6481

(0.0001)
+

0.6533

(0.0000)
+

0.6499

(0.0003)
+

0.6417

(0.0024)
+

2 120
0.6350

(0.0000)
0.0001

0.6124

(0.0005)
+

0.6198

(0.0000)
+

0.6148

(0.0004)
+

0.6251

(0.0001)
+

150
0.6346

(0.0000)
0.0006

0.6115

(0.0011)
+

0.6201

(0.0001)
+

0.6170

(0.0001)
+

0.6168

(0.0006)
+

100
0.4697

(0.0000)
0.0001

0.4645

(0.0001)
+

0.4680

(0.0000)
∼

0.4681

(0.0000)
∼

0.4628

(0.0001)
+

3 120
0.4697

(0.0000)
0.0001

0.4649

(0.0001)
+

0.4662

(0.0000)
+

0.4687

(0.0000)
∼

0.4637

(0.0001)
+

150
0.4711

(0.0000)
0.0001

0.4627

(0.0001)
+

0.4690

(0.0000)
+

0.4694

(0.0000)
+

0.4610

(0.0001)
+
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(a) Pareto frontier. (b) Pareto frontier and MDBO frontier.

(c) Pareto frontier and MDGWO frontier. (d) Pareto frontier and MDABC frontier.

(e) Pareto frontier and NSGA-II frontier. (f) Pareto frontier and MOEA/D frontier.

FIGURE 5. The Pareto solution set obtained by each algorithm is compared with the Pareto frontier

The more widely the whole solution set is distributed
in the target space, the more extensive the solution set
is.

In the optimization of multi-objective problems, evaluation
indexes such as C-metric, IGD-metric, and Hypervolume-
metric are often used. The evaluation indexes are as follows:

1) C-metric: C-metric [33] is called the solution set cov-
erage; the formula is as follows:

C(A,B)= |{u∈B|∃v∈A:v≻u}|
|B| (12)

The numerator is the number of solutions in B that are
dominated by at least one solution in A. The denomi-
nator is the total number of solutions in B.

2) IGD-metric: IGD-metric [34] is called Inverted Gener-
ational Distance. This index can be understood as the

approximation degree of Pareto. The advantage of this
index is that it can evaluate convergence and diversity
at the same time, and the calculation cost is small,
while the disadvantage is that reference sets are needed
formula is as follows:

IGD(ρ, ρ∗)=
∑

π∈ρ∗ d(π,ρ)

|ρ∗| (13)

3) Hypervolume-metric[35]: The volume of the region in
the target space bounded by the nondominant solution
set and the reference point obtained by the algorithm.
The higher the HV value is, the better the comprehen-
sive performance of the algorithm is. The formula is as
follows:

Hypervolume=
⋃|P |

i=1 vi (14)

VOLUME 1, 2022 21

ZHANG et al.: Discrete Bat Optimizer for Disassembly Line Balancing Problem



|P | is the number of nondominant solution sets. vi rep-
resents the Hypervolume formed by the reference point
and the i-th solution in the solution set. The advantage
of this index is that it can evaluate convergence and di-
versity at the same time. The disadvantage is that it has
high computational complexity, especially for high-
dimensional multi-objective optimization. The selec-
tion of reference points determines the accuracy of the
Hypervolume metric to a certain extent.

In the index evaluation stage, in order to ensure the accu-
racy of the data, we obtain a large amount of data through
experiments. We repeat 20 tests on the experimental cases
to obtain 20 experimental results, and use three evaluation
indexes C-metric, IGD-metric, and Hypervolume-metric to
evaluate the advantages and disadvantages of the algorithm.
Besides, we use the t-test with a degree of freedom of 38
and a significance level of 0.05 to analyze the experimental
results. The experimental results of the t-test can be di-
vided into three types, which are significantly better than,
significantly worse than, and statistical equivalence than,
they can be represented by the symbols “+”, “-”, and “∼”,
respectively.

B. PEER ALGORITHMS AND PARAMETER SETTING
In order to test the stability of the algorithm, the population
size |P | is adjusted, and the population size is 100, 120,
and 150, respectively. The experiment is carried out with
fixed parameters without updating the pulse emissivity Ri

and pulse loudness Ai.The pulse emissivity Ri of the MDBO
proposed in this paper is 0.5, and the corresponding pulse
loudness Ai is also 0.5. Parameters of all algorithms are set as
follows: mutation probability is 0.3 and the total fitness value
ftv is 3*number of operations*number of subassemblies. The
parameters involved in the objective functions are set as: Tl

is 50, = 0.95, F̂ is 200. In this work, all algorithms run 20
times independently.

All the algorithms are implemented in IntelliJ IDEA2020.1×64,
running on the AMD Ryzen 7 4700U CPU (2.00GHz/16.00GB
RAM) PC with windows 10 operating system.

C. ANALYSIS OF EXPERIMENTAL RESULTS
In this section, we use MDGWO, MDABC, NSGA-II,
MOEA/D, and MDBO to process the three test cases, and C-
metric, IGD-metric, and Hypervolume-metric are employed
to analyze their experimental results.

Instance 1 represents partial HD disassembly sequences
and their target values, Instance 2 represents partial RS
disassembly sequences and their target values, Instance 3
represents partial BP disassembly sequences and their target
values, where f1, f2, fc, and fm denote the total profit, en-
ergy consumption, failure cost, the number of workstations,
respectively in Table 1.

From Table 1, the first four are the data of HD disassem-
bly, In the first solution 1,2,4,8,14,24 represents a complete
disassembly sequence, the first four operations 1,2,4,8, are
assigned to the first workstation, and the next two operations

14,24 are assigned to the second workstation. Two work-
stations are used for the entire disassembly process. It can
be seen that the profit generated during this operation is
216.5, the energy consumption value is 815.2, and the failure
cost is 35.2. By analyzing the disassembly sequence of each
group, it can be seen that with the increase of the disassembly
sequence, all the target values are increasing.

Table 2 gives the experimental results in terms of C-
metric of three cases. C1, C2, C3, C4 respectively represent
the comparison between MDBO and MDGWO, MDABC,
NSGA-II, and MOEA/D. The top data in each row represent
the dominance degree of MDBO over each comparison al-
gorithm, while the bottom data are the dominance degree of
each algorithm over MDBO. By comparing the values, it can
be seen that MDBO is far better than NSGA-II, MDGWO
and MOEA/D have little difference in solving this problem,
and MDBO and MDABC have the least difference. Since
the disassembly scale of Instance 3 is relatively small, it
can be seen that “ ” appears in Instance 3, so it can be
concluded that MDBO has more advantages in solving large-
scale problems. The data obtained according to different
population sizes have no obvious fluctuation, which indicates
that the performance of each algorithm is relatively stable.

Table 3 reveals the experimental results of five algorithms
in three cases via IGD-metric. Pop stands for population
number, and there are three types of population numbers:
100,120,150. From these results, we can conclude that
MDBO performs better than MDGWO, MDABC, NSGAII,
and MOEA/D for solving the concerned problem because the
IGD values of MDBO are smaller than those of MDGWO,
MDABC, NSGAII, and MOEA/D. From the observation of
Instance 1, it can be seen that the MDBO is slightly better
than the MDABC, and the MDBO has achieved a very good
effect in Instance 2.

To further reveal the performance of MDBO, the
Hypervolume-metric is adopted to analyze the experimental
results. Table 4 shows their Hypervolume values. It can be
found that the Hypervolume value obtained by MDBO is
larger than that of all algorithms, which indicates that the
optimization effect of MDBO is better than that of other
algorithms. By observing the data, it can also be seen that
in Instance 2 and Instance 3, the floating difference of data
obtained by the three parameters of MDBO is very small,
which is due to the small number of Pareto solutions in the
case itself.

In order to show the advantages and disadvantages of each
algorithm more intuitively, we draw the Pareto frontier of
each algorithm in Fig. 5, where the horizontal axis represents
the f1 and the vertical axis represents the f2. As can be
seen from Fig. 5, MDBO is the closest to the real Pareto
frontier, followed by MDABC, and the other three algorithms
are not much different. They achieve the same effect with
the above C-metric, IGD-metric, and Hypervolume-metric,
indicating that MDBO has achieved a good effect in solving
this problem.
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V. CONCLUSION AND FUTURE WORK
This addresses the discrete and stochastic multi-objective
DLB problem. A mathematical programming model is es-
tablished to describe the problem. A multi-objective discrete
bat optimization (MDBO) method combined with stochastic
simulation is designed to find the best solution. The exper-
imental results show that MDBO is better than MDGWO,
MDABC, NSGA-II, and MOEA/D, the four most outstand-
ing algorithms in the domain.

Future research can focus on the following aspects: Con-
sidering more restrictive conditions. The current DLB model
mainly focuses on reducing idle time and dismantling costs,
but in practical applications, other limitations need to be
considered, such as safety, environmental protection, quality
requirements, etc. Therefore, future research can consider
adding more constraints to the model to improve the prac-
ticality and reliability of DLB. Optimize DLB using intel-
ligent technology. Currently, intelligent technologies such
as artificial intelligence, machine learning [36–38], and the
Internet of Things are rapidly developing, which can provide
more optimization methods for DLB. For example, machine
learning algorithms can be used to optimize task allocation
and workstation scheduling, improving the system’s adapt-
ability and flexibility. Investigating the modeling and opti-
mization of disassembly lines of multiple products U-shaped
layout[39, 40] and parallel layout [41].
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