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ABSTRACT The disassembly, recovery, and reuse of waste products are attracting more and more
attention. It not only saves resources and protects the environment but also promotes economic development.
In a disassembly process, the disassembly line balancing problem is one of the most important problems.At
present, the consideration of the space area of workstations is relatively small, and the relatively large use
of the area of workstations can also better reduce costs. Aiming at the balancing problem of u-shaped
disassembly line, a single-objective optimization mathematical model with area constraints is established
with the goal of maximizing profits. In order to solve this problem, we refer to Adaptive Genetic Algorithm
and improve its crossover and mutation operator. We adopt elite strategy to avoid premature convergence
and improve the global search ability. Its effectiveness is proved by comparison with the optimization results
of CPLEX. Experimental results also verify the feasibility of the proposed model and the superiority of the
improved Adaptive Genetic Algorithm when solving large-scale instances over another algorithm. At the
same time, the experimental results also verify the superiority and effectiveness of the improved Adaptive
Genetic Algorithm algorithm by comparing with Random Search.

INDEX TERMS Disassembly line balancing; Adaptive genetic algorithm; U-shaped disassembly line.

I. INTRODUCTION

With   the   rapid   development   of   science  and  technology, 
the  demand  for  human   consumption  becomes  more
diverse, which makes the life cycle of products shorter and
useless [1–5]. In addition, some of these discarded products
cause great harm to the environment by littering. However,
for partial end-of-life (EOF) products, we can disassemble
useful parts and reuse them to reduce environmental pollu-
tion. In this way, disassembly and recycling are important
links in the life cycle of products [6–11]. Through the disas-
sembling and recycling of the product, the recycled valuable

parts can be repaired and reused.However, for the hazardous
parts, disassembling may reduce their harm and make them
reach the green standard [12–16].

Since the concept of the Disassembly Line Balancing
Problem (DLBP) is proposed [17], scholars have conducted
a lot of research to disassemble products and arrange work-
stations. There are also various problems in the actual disas-
sembly. For example, some workstations may be very busy,
some workstations may not work, some workstations may
place too many parts, and some workstations may place too
few parts, etc. Therefore, reasonable planning of disassembly
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task allocation becomes a key factor. At present, intelligent
optimization algorithms such as artificial bee colony algo-
rithm [18], variable neighborhood search algorithm [19], and
ant colony algorithm [20] are widely used in DLBP. Kalayci
et al. establish DLBP mathematical model by considering
the uncertainty of disassembly operation time, the number
of opened workstations, and the priority to disassemble parts
with high harm and high demand, and adopt an artificial
swarm algorithm for optimization [21]. Wang et al. use
the variable domain search algorithm to solve the workload
problem of the balanced workstation and establish the cor-
responding DLBP mathematical model. A parallel dynamic
neighborhood depth search algorithm is designed to maxi-
mize the reasonable assignment of employees [22]. Bentaha
et al. [23] consider the issue of disassembly time and opti-
mize the start-up cost of workstations and the disassembly
cost of harmful parts by establishing a constrained binary
programming model. Altekin et al. [24] successfully realize
the profit maximization in the whole disassembly time by
establishing a hybrid planning model. Koc et al. [25] estab-
lish the corresponding DLBP mathematical model according
to the priority relationship of tasks, and solve the model by
integer programming and dynamic programming to achieve
the goal of minimizing the total number of workstations.

The traditional way of product disassembly is mainly com-
prised of a single person and a single machine, which takes a
long time and is inefficient. The U-shaped disassembly [26]
is a large-scale wany of production and presents a U-shaped
distribution state. On each workstation, employees stand in
the middle and disassemble products on both sidesof the
line. Its main feature is that in a process of search, it can
search from the front and back directions and then assign
the corresponding disassembly task. That is to say, the first
and last tasks in the disassembly sequence can be assigned to
the same workstation. This line may also reduce the walking
distance and time of the employees, therefore the efficiency
of the U-shaped disassembly line is significantly increased
[27–33]. Gu et al. [34] consider the uncertainty of disassem-
bly time based on a U-shaped disassembly line and explore
the balance problem of a random U-shaped disassembly line.
Cai et al. [35] consider the material quality of waste products
and the metal quality of different parts have a very important
relationship with the cost, so they establish a U-shaped
disassembly line mathematical model of parts classification.
Zhang et al. [36] create a mathematical model of a multi-
objective U-shaped disassembly line based on the cost of
resource allocation, to solve the disassembly task interruption
caused by equipment failure of the disassembly line. Wang
et al. [37] consider some destructive disassembly problems
and disassembly time, and establish a corresponding mathe-
matical model of U-shaped disassembly line destruction, and
adopt a discrete flower pollination algorithm to solve this
problem.

The above papers consider disassembly time, disassem-
bly parts, and damage problems, while the space area of
workstations has not been considered much by researchers at

present. In an actual process of disassembling, we encounter
different sizes of workstations, different types of products,
and different parts of the same procuts. This results in a very
messy layout of workstations that is not easy to manage.
When allocating the parts to be disassembled, we should
consider the size of the space occupied by the parts, so
that the area of the workstation is evenly distributed. In
this way, a more standardized disassembly production line
is established to improve the disassembly efficiency of the
workstation. Therefore, it is necessary to explore the single-
objective DLBP of workstations under the constraint of space
area. In this paper, we propose a single-product U-shaped
disassembly-line-balancing problem (SUDP). Adaptive Ge-
netic Algorithm has been applied in many fields. Adaptive
Genetic Algorithm has simple algorithm, strong direction-
ality of genetic operator operation and good convergence.
On this basis, the Adaptive Genetic Algorithm is improved
to solve the above problems. The main contributions are as
follows:

1) The problem of space area constraint based on U-
shaped disassembly line is proposed, so the mathe-
matical model of single-product and single-objective is
established to maximize the profit.

2) The validity of the proposed model is verified by
the results of CPLEX [38] and the improved AGA
(IAGA), and the simulation results prove the efficiency
and effectiveness of the IAGA algorithm in the SUDP
problem.

3) To verify the feasibility of the IAGA algorithm in
SUDP, it is compared the decomposition-based Ran-
dom search (RS) [39] algorithm. Results clearly verify
the effectiveness of the IAGA algorithm in solving
such problems.

The rest of this paper is as follows. The description of
the issues is presented in Section II. The explanation of
the IAGA algorithm is presented in Section III. Section IV
mainly describes experimental results and analysis. The last
Section summarizes this article.

II. PROBLEM DESCRIPTION
A. PROBLEM STATEMENT
In traditional factory disassembly, the disassembled product
moves from one workstation to the next at a speed on a
conveyor belt, and at the same time the disassembled parts be
classified into the material storage area of the workstation,
and waiting for secondary transfer. However, this situation
may cause problems. Because the length of our workstation
is limited to a certain extent, but the size of the parts of
the products may be small or large. If we assign a number
of tasks containing large parts to the same workstation, the
space of the workstation will increase and the cost increase,
which is not a small problem for the factory. At the same
time, the factory will constantly change the product as time
goes by. However, the size of workstation is unchanged,
which lead to space area problems and need to rearrange
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FIGURE 1. The schematics of a hammer drill.

a new reasonable disassembly plan. The characteristic of
the U-shaped disassembly line is that one employee can
disassemble tasks on both sides of the disassembly line at
the same time, and the disassembled parts can be placed in
the parts placement area to facilitate the re-transfer of parts.
The maximum area of the workstation is a value obtained by
considering the floor area of the parts of various products,
so that the factory can replace different products. In the
disassembly line problem under the area constraint, the area
where parts are placed, the size of parts and the footprint of
the workstation are considered. When each task is assigned to
the workstation, the relationship between the overall footprint
and working time is more balanced.

To make the task allocation scheme more reasonable,and
to describe the relationship between each component more
clearly, this paper adopts AND/OR diagram to represent
the priority relationship between each component.This paper
chooses the hammer drill case to study. Fig. 1 is the schematic
diagram of a hammer drill, Fig.2 is the U-shaped disassembly
line flow chart of a hammer drill, and Fig. 3 is the AND/OR
diagram of a hammer drill. In Fig. 2, we can see the whole
process of a set of disassembly sequences of a hammer
drill. The number inside the circle represents the operation
in the AND/OR diagram. The disassembly product enters
the disassembly line from the entry side, after disassembly
tasks reasonable allocate, produce the disassembly sequence,
namely "1 - > 2 - > 4 - >8- > (-15) - > (-25) - > (-34)", Task
1 and task 34 are assigned to the first workstation.Task 1 on
the entrance side and task 34 on the exit side. Task 2, 4, and
25 are assigned to the second workstation, task 2 and task 4
on the entrance side, and task 25 on the exit side. Task 8 and
task 15 are assigned to the third workstation, task 8 on the en-
trance side and task 15 on the exit side. Finally, the waste can
be treated.Tasks in the disassembly sequence are assigned
to corresponding workstations for disassembly through time
constraints, area constraints, priority constraints, and conflict
constraints.

In a process of disassembling parts, it is impossible to dis-
assemble them on the conveyor belt. We need to disassemble
them on the workstation. However, the disassembled parts

occupy a certain position on the workstation, which we call
the floor area. This floor area must have its maximum value,
which ensures our maximum profit under this condition. And
we have to ensure that the parts we disassembled can be
placed on the workstation. Take the disassembly of a product
as an example. When a component in the workstation needs
further disassembly, we first release its position on the work-
station and recalculate the area occupied by its disassembled
sub-parts. When a product is disassembled, we transfer the
components on all workstations, that is, release all the area
resources of the workstation.

Fig. 4 shows the changes in the floor area of each work-
station during the disassembly of a product. During t1 ∼t2,
workstation 1 performs task 1, that is, disassemble compo-
nent 1. At this time, the floor area of workstation 1 is the floor
area of the whole product at the beginning. t2∼t3 perform
task 2. What is disassembled is component 3 disassembled
from workstation 1 that can be further disassembled. At this
time, the floor area of the parts in workstation 1 that do not
need to be disassembled is shown in the figure. t3∼t4 time to
execute task 4, which is carried out in workstation 2 and the
component 3 disassembled by task 2 is the component dis-
assembled by task 1 and needs to be disassembled. Perform
task 8 within t4∼t5 time. Component 7 disassembled by task
8 is the component disassembled by task 4 and needs further
disassembly. From t5 to t6, task 15 is executed. Task 15 is
assigned to the exit side of workstation 3 for disassembly,
but it is still disassembled on workstation 3. Assembly 11
is disassembled into assembly 46 and assembly 15. Task 25
is executed in t6∼t7 time, and task 25 is assigned to the exit
side of workstation 2. Therefore, the floor area of workstation
2 at this time is the area of component 4 and component 43
that do not need to be disassembled before plus the floor area
of component 15 that needs to be disassembled in task 25.
Task 34 is executed in t7∼t8 time. Task 34 is assigned to
the exit side of workstation 1. At this time, the floor area
of workstation 1 is the area of component 2 that does not
need to be disassembled before plus the area of components
disassembled by task 34 at this time. At this point, the
disassembly process of a product ends. t8∼t9 represents the
display of the floor area of each part of workstation 1 and the
recovery time.

The specific area changes on the inlet side and outlet side
of workstation 1 for disassembling a product are shown in
Fig. 5. 0 ∼t1 represents the appearance of the entrance side of
workstation 1. t1 ∼t2 indicates the status of the workstation
that has just started to allocate the disassembled product. At
this time, component 1 is removed from the workstation. t2
∼t9 represents the status of component 1 after disassembly.
At this time, workstation 1 only performs task 1, and only
component 2 remains on workstation 1. 0 ∼t7 represents the
exit side of workstation 1. When the time goes to t7, the exit
side of the workstation 1 starts to perform task 34, that is,
start to disassemble component 19. When the time goes to
t7, the exit side of the workstation 1 starts to perform task
34, that is, start to disassemble component 19. At this time,
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FIGURE 2. U-shaped disassembly line flow chart of hammer drill.

t7 ∼t8 represents the workstation status of disassembly task
34. t8 ∼t9 represents the distribution of components at the
exit side of workstation 1 after task 34 is removed. At this
time, the removal task of workstation 1 is over. Finally, the
distribution of the disassembled components of workstation
1 is shown.

According to the above description of the AND/OR dia-
gram, we introduce two matrices S and D to describe this
problem.

1) A precedence matrix S = [Sjk] is used to describe the
sequence of disassembly operations, where j and k represent
disassembly tasks.

Sjk =


1, if operation j can be performed before operation k

−1, if operation j and k conflict with each other
0, otherwise

The precedence matrix for the washing machine is shown
below:

S =



0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 -1 -1 1 -1 -1 -1 -1 1 1 -1 -1
0 -1 0 -1 -1 1 1 -1 -1 1 1 1 -1
0 -1 -1 0 -1 -1 -1 1 1 1 -1 1 1
0 0 -1 -1 0 -1 -1 -1 -1 1 1 -1 -1
0 -1 0 -1 -1 0 -1 -1 -1 0 1 -1 -1
0 -1 0 -1 -1 -1 0 -1 -1 0 -1 1 -1
0 -1 -1 0 -1 -1 -1 0 -1 1 -1 1 -1
0 -1 -1 0 -1 -1 -1 -1 0 1 -1 -1 1

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 -1 0 0 -1 -1 -1 0 0 -1 -1

0 -1 0 0 -1 -1 0 0 -1 0 -1 0 -1
0 -1 -1 0 -1 -1 -1 -1 0 1 -1 -1 0



2) A disassembly incidence matrix D = [dij ] where dij
means the relationship between subassembly i and disassem-
bly operation j:

dij =


1, if subassembly i is obtained by operation j

−1, if subassembly i is disassembled by operation j

0, otherwise

The conflict matrix for the washing machine is shown below:

D =



-1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
1 -1 -1 -1 0 0 0 0 0 0 0 0 0
0 1 0 0 -1 0 0 0 0 0 0 0 0
0 0 1 0 0 -1 -1 0 0 0 0 0 0
0 0 0 1 0 0 0 -1 -1 0 0 0 0
0 0 0 0 1 1 0 0 0 0 -1 0 0
0 0 0 1 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 1 1 0 0 0 -1 0
0 0 0 0 0 0 0 0 1 0 0 0 -1
0 1 0 0 0 1 0 0 1 0 0 1 0
0 0 1 0 1 0 0 1 0 -1 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1


In the work of this paper, we have the following assumptions

1) The matrices S and D mentioned above are known.
2) The workstations for removing wires are arranged in

order.
3) Not all components in EOL products can be completely

disassembled.
4) The workstation starts with the first task and ends when

all tasks are assigned.
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5) The actual disassembly time of each workstation is less
than the specified cycle time, and the disassembly time
of each disassembly task is known.

6) The floor area of the parts can be measured and never
change, and the workstation is designed into a similar
rectangle or square according to the area of most prod-
ucts to ensure that the parts can be placed.

7) Although the disassembled product is single, it is
enough to make the disassembly line run normally
without interruption.

8) There is no damage to the disassembled parts.

B. NOTATION DEFINITION
The symbols involved in the mathematical model are as
follows:

i Component index,i ∈ {1, 2, . . . , I} where I indicate
the number of product components .

j Disassembly Task index, j ∈ {1, 2, . . . , J}, where
J is the number of product disassembly tasks,

and 0 is the virtual task.
Rj The set of preorder tasks of task j .
l Workstation Index, l ∈ {1, 2, . . . , L}, where L is

the number of workstations.
ai Footprint of component i.
S Given the priority matrix of an AND/OR graph.
D The association matrix of the given AND/OR graph.
dij A member of the i-th row and the

j-th column of D.
tj The disassembly time for the j-th task .
cj Disassembly cost per unit time for the j-th task.
cl Cost per unit area of workstation l .
Al Maximum storage area of workstation l.
T Workstation cycle time.

Decision variables:

xjlw =


1,If the product task j is assigned to side
w of workstation l and executed

0, otherwise

ul =

{
1,if workstation l is in use
0, otherwise

C. MATHEMATICAL MODEL

max f1 =
J∑

j=1

I∑
i=1

L∑
l=1

1∑
w=0

dijvixjlw −
L∑

l=1

clAlul

−
J∑

j=1

L∑
l=1

1∑
w=0

tjcjxjlw

(1)
J∑

j=1

I∑
i=1

1∑
w=0

xjlw ≥ 1. (2)

L∑
l=1

1∑
w=0

xjlw ≤ 1, j ∈ {1, 2, · · · , J}.
(3)

J∑
j=1

1∑
w=0

xjlw ≥ ul, l ∈ {1, 2, · · · , L}. (4)

J∑
j=1

1∑
w=0

xjlw ≤ B∗ul, l ∈ {1, 2, · · · , L}. (5)

ul ≥ ul+1, l ∈ {1, 2, · · · , L− 1}. (6)

J∑
j=1

1∑
w=0

tjxjlw ≤ Tul, l ∈ {1, 2, · · · , L}. (7)

xjlw ≤
∑

j′εRj

l−1∑
l′=1

∑
w′=0

xj′ l′w′ ∗ Sjj′ ,

j ∈ {3, · · · , J}, l ∈ {1, 2, · · · , L}, w = 0.
(8)

xjlw ≤
∑

j′εRj

L∑
l′=1

∑
w′=0

xj′ l′w′ ∗ Sjj′ +
∑

j′εRj

L∑
l′=l+1

∑
w′=1

xj′ l′w′ ∗ Sjj′ +
∑

j′εRj

∑
w′=1

xj′ lw′ ∗ Sjj′ , j ∈ {3, · · · , J},

l ∈ {1, 2, · · · , L}, w = 1
(9)

1∑
w=0

L∑
l=1

(xjlw+xklw) ≤ 1, j, k ∈ {1, 2, · · · , J}

(10)

I∑
i=1

J∑
j=1

1∑
w=0

(aidijxjlwul − ai
1∑

w′=0

dijxjw′ ) ≤ Al,

l ∈ {1, 2, · · · , L}
(11)

xjlw, ulϵ {0, 1} , j ∈ {1, 2, · · · , J}, l ∈ {1, 2, · · · , L},
wϵ {0, 1}

(12)
The objective function (1) represents the maximum ex-

pected profit of disassembled products. Constraint (2) en-
sure that at least one task is performed. Constraint (3) en-
sure that each disassembly task can be executed only once.
Constraint (4) indicates that each task per product can be
assigned to only one workstation. Constraint (5) ensure that
the workstation is started and you can start the disassemble
task. Constraint (6) turn on workstations in turn,and no idle
workstations are allowed. Constraint (7) indicates that the
disassembly time of each workstation cannot exceed the
cycle time. Constraint (8) and Constraint (9) the order of fea-
sible disassembly tasks must satisfy the priority relationship.
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FIGURE 3. the AND/OR graph of a hammer drill.

FIGURE 4. workstation area change diagram for disassembling a product.

Constraint (10) ensure a feasible disassembly task sequence,
conflict relationships must be satisfied. Constraint (11) means
that the actual storage area of each workstation shall not be
greater than the specified area. Constraint (12) gives the range
of decision variables.

III. PROPOSED ALGORITHM
AGA algorithm [40] is a kind of adaptive genetic algorithm,
which has been applied in many fields. It has the advan-
tages of simple algorithm, strong directional operation of
genetic operator and good convergence. The IAGA algorithm

changes the crossover probability and mutation probability
according to the adaptivity value of each individual. When
most individuals stay in the local optimal position, it needs to
increase the crossover and mutation probability to improve
the optimization ability of the algorithm. On the contrary,
when individuals in the population are scattered in the solu-
tion space, the probability of crossover and mutation needs
to be reduced to improve the convergence ability of the
algorithm. The IAGA algorithm is more beneficial to solve
the SUDP problem.

ZHANG et al.: An Improved Adaptive Genetic Algorithm for UDLB-ARC

VOLUME 1, 2022 53



FIGURE 5. Schematic diagram of area change at the inlet and outlet side of
workstation1.

FIGURE 6. Flow chart of IAGA algorithm.

A. INTRODUCTION AND IMPROVED OF BASIC AGA
The main flow chart of the IAGA algorithm is shown in
Fig. 6. The IAGA algorithm improves the crossover mutation
operator on the basis of the traditional genetic algorithm, and
adopts the elite strategy to avoid the problem of premature
convergence and improve the global search ability. Mean-
while, it avoids the problem of sawtooth and has relatively
strong local search ability.

The main idea of the IAGA algorithm is to start from
the initial population, calculate the adaptive value, and use
the cross mutation operator to generate a new individual. In
order to ensure that the individual population remains the
same size, the elite individual joins the next generation of
the new population. If there is no individual in the population
with a higher fitness value than the elite individual, the elite
individual is added to the new generation of the population,
And the individual with the smallest fitness value in the new
species group is eliminated. The pseudo-code process of the
IAGA algorithm is shown in Algorithm 1.

Algorithm 1 IAGA algorithm

Input: population P
Output: best individual

1: n = Population size
2: P [t] = initialize P (n)
3: while Termination ConditionMet() == false do
4: fitnessvalue=fitness(n);
5: for t=1 do
6: gbestfitness0 = max(fitnessvalue);
7: parents = select parents(P [t]);
8: P [t+1] = crossover(parents);
9: P [t+1] = mutate(P [t+1]);

10: fitnessvalue = fitness(P (n,t));
11: gbestfitness1 = max(fitnessvalue);
12: if gbestfitness1 < gbestfitness0 then
13: pop(gbestindividual0)
14: fitnessvalue(gbestindex1) = gbestfitness0;
15: end if
16: fitnessvalue = fitness(P (n,t));
17: end for
18: end while

To enrich the whole population, some bias towards the
inferior state solution must also be established, so we set
up the Reduce algorithm. In order to rank the solutions
of considerable importance differently, while keeping the
runtime complexity relatively small, the individual with the
highest d(s, p(t)) value in the worst front will be eliminated;
otherwise, the individual with the highest d(s, p(t)) value
equal to 0 will be replaced by the y option. Reduce is shown
in algorithm 2.

Algorithm 2 Reduce(P)

Input: a population P
Output: The result of eliminating the detection element P/r

1: if v < 1 then
2: r = argminsϵyv

[d (s, p)]
3: else if v > 1 then
4: r = argminsϵy1 [y (s, y1)]
5: end if

B. THE INTERPRETATION OF ENCODING AND
DECODING
According to the characteristics of the disassembly line, two
search strategies should be obtained. Firstly, there should be
a disassembly sequence of disassembly products. Secondly,
a scheme of disassembly task allocation to workstations
should be given, that is, how to allocate the disassembly
sequence is the most reasonable. We represent a solution
as a stringβ=(β1,β2) ,among this β1=(θ1,θ2,θ3,. . . ,θj ,. . . θJ ),
β1=β2=x1, x2, x3, . . . , xj , . . . xJ ,β1 represents the sequence
of disassembly tasks, consisting of the index number of the
disassembly tasks. β2 consists of a set of binary strings,
zeros, and ones. If xj=1, then the task on the j index in the
disassembly sequence be executed, otherwise not.

Obviously, randomly generate solutions may be infeasible,
so we need a series of adjustment work to adjust infeasible
solutions into feasible solutions step by step, and the com-
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plete adjustment should not only meet the priority relation-
ship but also meet the cycle time and area constraints of
the workstation. The adjustment process is divided into three
stages. The first stage is to find out the two adjacent tasks that
do not conform to the priority relationship by traversing all
the tasks and achieving the goal of conforming to the priority
relationship by changing their positions. The second stage is
to adjust the array of binary strings to a priority array, which
is essentially the same process as the first stage until all tasks
have been traversed completely. The third stage is to avoid
the solution being affected by the conflict relationship, that
is, to traverse all tasks, find the task with conflict relationship
between two tasks, and set it to 0. The adjustment process
of the three stages is shown in Fig.7. After three stages, we
have a new solution β

′
. The decoding process of β

′
is shown

in Fig. 8.

C. CROSSOVER OPERATOR
The main idea of the crossover operator is to cross-combine
the children of two parents. The children of the first parent
and the children of the second parent are combined based on
randomly generated binary strings. The function of a binary
string is to add the child of the first parent generation to the
new solution when the binary is 0, and the child of the second
parent generation to the new solution when the binary is 1,
until all the children are added to the solution, and finally
a new solution is obtained. However, this solution may not
meet the requirements of priority relation, so the sequence
adjustment shown in Fig. 7 above is needed to adjust the
newly obtained solution and obtain the solution that meets
the requirements. The crossover diagram is shown in Fig. 9.

D. MUTATION OPERATOR
The idea of the mutation operator is to find a random mu-
tation point in the parents, the pre-task and post-task are
found according to the mutation point, and then the task
of the mutation point is randomly inserted into the parent
generation except for the pre-task and post-task. Finally, a
new solution with priority relation is obtained. The mutation
diagram is shown in Fig. 10.

TABLE 1. The solution result of flashlight under IAGA algorithm

Num Disassemble scheme profit Space Area

1 (1, 3, 7, 6, 9, 10) 1188 1.48
2 (1, 3, 9, 10) 963.3 1.30
3 (1, 9, 3, 6, 10) 1070.2 1.45
4 (1, 9, 10, 3) 906.3 1.37

IV. EXPERIMENTAL RESULTS AND ANALYSIS
To verify the correctness of the mathematical model in this
paper, the IAGA and CPLEX are used to verify the model
respectively. The operating environments are the Jmetal
framework [41] and IBM ILOG CPLEX Optimization Stu-
dio. Meanwhile, to demonstrate the superiority of the IAGA

FIGURE 7. Disassembly sequence adjustment process.

FIGURE 8. The decoding process.

algorithm, we chose the RS algorithm for comparison. To
ensure the fairness and effectiveness of the experiment, all
experiments are conducted on a Core (TM) I-3230m 2.60ghz
4G computer.

It can be seen from Table 2 and Table 2 that the cor-
responding profit and space area of different disassembly
schemes are also different. When the demolition schemes are
similar, the profit and area change within a certain range.
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FIGURE 9. The crossover diagram.

FIGURE 10. The mutation diagram.

In Table 1, the maximum profit is 1188, and the change
range of space area is 1.30 1.48. In Table II, the maximum
profit is 1775.1, and the change range of space area is 1.41
1.44. Therefore, leaders can choose the disassembly scheme
suitable for their factory according to different cases and the
actual situation. If it is a small case and wants a high profit,
select case 1 in Table 1. At this time, the space area of the
workstation is 1.48; If it is a large case and wants a high
profit, choose scheme 4 in Table 2. At this time, the space
area of the workstation is 1.42. From the data of a small
case and a large case above, it can be seen that to enable the
same factory to disassemble multiple products, the area of the
workstation needs to be set to an appropriate size so that the
disassembled products can be replaced more conveniently.
Through the analysis of the cases, the area of the workstation
can be kept unchanged and the disassembled products can
be replaced at any time. At the same time, to maximize the
benefits, leaders need to choose the appropriate scheme for
disassembly.

TABLE 2. The solution result of hammer drill under IAGA algorithm

Num Disassemble scheme profit Space Area

1 (1, 2, 4, 7, 12, 21, 31, 13, 23, 11, 18, 31, 30) 1501.4 1.41
2 (1, 2, 4, 7, 12, 21, 31, 11, 18, 20, 30, 37, 13, 23) 1566.8 1.43
3 (1, 2, 4, 8, 13, 23, 15, 25, 34, 11, 18, 19, 29, 36) 1772.2 1.44
4 (1, 2, 3, 6, 10, 17, 27, 11, 18, 28, 20, 30, 13, 23) 1775.1 1.42

A. TEST INSTANCES
We use four cases, Flashlight [42] Ballpoint Pen [43] Wash-
ing Machine [44], and Hammer Drill [45] as test cases.The
number of tasks of these cases is 10, 13, 13, and 46, respec-
tively, and the number of components is 15, 15, 15, and 63,
respectively.

B. RESULTS COMPARED WITH CPLEX
We use the IAGA algorithm and CPLEX respectively to
compare the profit and running time of the four cases. The
results of running are shown in Tables 3 and 4, respectively.
The population size of the IAGA algorithm is 100, and the
maximum number of iterations is 1000, and the probability
of crossover and mutation is 0.9 and 0.3 respectively, and the
number of runs is 20. In order to show the real validity of the
test results, there is a large difference in the number of tasks
used. The smallest case is a flashlight with 10 tasks, and the
largest case is a hammer drill with 46 tasks, the difference in
the number of tasks is 36.

Table 3 shows the solution results of the instance set based
on the IAGA, and Table 4 shows the solution results of
the instance set based on CPLEX. To test the speed and
effectiveness of the experimental scheme, the instance set
solution result of the IAGA is compared with that of CPLEX.

As shown in Table 4, from the perspective of maximum
profit, CPLEX is always the optimal solution no matter it
is a small case or a large case, and the numerical value is
similar to that of the IAGA. However, from the perspective
of running time, the running time of the IAGA flashlight
is 0.17 seconds, while that of the CPLEX flashlight is 0.21
seconds, which is slower than that of the IAGA for small
cases; the IAGA hammer-drill run time is 0.45 seconds and
the CPLEX hammer-drill run time is 0.74 seconds. In the
large case, the IAGA algorithm is faster than the CPLEX and
in the remaining two cases the IAGA is also faster than the
CPLEX. So in general, CPLEX runs slower.

TABLE 3. Results of solving the instances set based on the IAGA.

Products Result Profit time

Flashlight (1, 3, 7, 6, 9, 10) 1188 390 ms
Ballpoint Pen (2, 6, 10, 11, 13) 924 171 ms

Washing Machine (1, 2, 5, 11, 10) 890 312 ms
Hammer Drill (1, 2, 4, 7, 12, 21, 31, 11, 20, 13, 23) 1511.5 375 ms

TABLE 4. Results of solving the instances set based on CPLEX.

Products Result Maximum Profit Computation time

Flashlight (1, 3, 7, 6, 9, 10) 1188 2990 ms
Ballpoint Pen (2, 6, 10, 11, 13) 924 3240 ms

Washing Machine (1, 2, 5, 10, 11) 890 3630 ms
Hammer Drill (1, 2, 4, 7, 12, 21, 31) 1512 11300 ms

C. COMPARE WITH RANDOM SEARCH
Table 5 shows different iteration data results of the two
algorithms based on a Hammer Drill, and Table 6 shows
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TABLE 5. Data results of different iterations of TWO ALGORITHMS based on
hammer drill.

Iterations the IAGA RS
10 982 998
20 1000 1035
30 1064 1052
40 1074 1054
50 1108 1054
60 1117 1054
70 1117 1054
80 1117 1054
90 1117 1054

TABLE 6. Data results of different iterations of TWO ALGORITHMS based on
radio.

Iterations the IAGA RS
50 134.2 228.6
100 360.1 273.7
200 456.9 328.7
300 599.4 435.1
400 632.7 598.6
500 671.2 598.6
600 671.2 598.6
700 671.2 598.6

FIGURE 11. Comparison of hammer drill target values.

FIGURE 12. Comparison of radio target values.

different iteration data results of the two algorithms based on
Radio. It is obvious from the data in the two tables that the
comparison of the data in the two tables shows the advantages
of the IAGA algorithm.

It can be seen from Table 5 that after 20 iterations, the
profit value of the IAGA is significantly higher than that of
RS, and the same effect is achieved with more iterations in
the later. The case tasks of the ballpoint pen are relatively
few, so the number of iterations be relatively large before it
changes. When the iteration is 100 times, the profit value of
the IAGA began to be higher than that of RS. As the number
of iterations increase, the profit value of the IAGA and RS
algorithms also increase. When the iteration is 200 times,
RS has priority as the optimal solution, but the IAGA could
continue to search. RS has already fallen the local optimal
solution, which shows the superiority of the IAGA algorithm
and the genetic operator it uses can better avoid the local
optimal situation.

Fig. 11 is a comparison of target values for hammer drills
and Fig. 12 is a comparison of target values for radio. These
two pictures can more vividly explain the situation described
above. It can be seen from the figure that the profit value
change curves of hammer drill and ballpoint pen in different
iterations. In the hammer drill case, RS starts to level off
after less than 50 iterations, while the IAGA starts to level
off after 50 iterations. In the case of the ballpoint pen, the
effect is even more obvious, with RS becoming smooth
after 200 iterations and the IAGA becoming smooth after
300 iterations. Through the above statements, we can more
definitely see the feasibility and superiority of the IAGA
algorithm.

V. CONCLUSION
The IAGA algorithm is proposed to solve the single prod-
uct U-shaped disassembly line balance problem. Firstly, to
verify the correctness of the mathematical model designed,
CPLEX is used to test the mathematical model and the run-
ning disassembly sequence is correct. Compare with CPLEX
running time, the larger the case information, the smaller
the IAGA running time, and the better the superiority. The
mathematical model mainly considers the maximum profit.
After several experiments, the accuracy and superiority of
the algorithm are verified by comparison with the other two
algorithms. There is a very small difference in the number of
tasks of the cases sought in this paper. In future work, we will
find more cases with different tasks to verify the algorithm,
making the experiment more rigorous and more convincing.
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