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ABSTRACT Reinforcement learning is a branch of machine learning that facilitates the interaction of
autonomous agents with their environments. This is done by “teaching” an agent efficient decision-making
through iterative processes of exploration and trial-and-error. This review article focuses on the application
of reinforcement learning within the healthcare industry. We review recent publications that address the
optimization of the pickup and delivery processes for essential supplies and medications with mobile
robots, and the integration of these two key technologies to improve hospital operations efficiency. We
also investigate the gap between research results and real-world applications, and point out directions for

future work.

INDEX TERMS Reinforcement learning, robot navigation, healthcare, medication delivery.

. INTRODUCTION

This review article focuses on the application of rein-

forcement learning (RL) within the healthcare industry.
The goal is to create a model that improves the decision-
making of autonomous agents in a simulated hospital envi-
ronment. In this context, we review recent publications that
address the optimization of the pickup and delivery processes
for essential supplies and medications within hospital set-
tings.

The significance of this work lies in its potential to address
critical challenges within the healthcare industry. Refinement
learning techniques make it possible to improve efficiency
in hospital operations by developing an autonomous agent
capable of optimizing pickup and delivery processes. By au-
tomating such processes, a positive impact could be achieved
on both the patient and caregiver well-being. The research
was relevant in the context of applying machine learning
techniques to solve real-world problems [ 1]] [2], which would
have abundant benefits for both healthcare providers and
patients. Therefore, the significance of this research lay in
its potential to bring about positive and practical changes in
the healthcare sector.

The rationale for this study came from the knowledge gap

12 This work is licensed under a Creative Commons Attribution 4.0 License.

that exists within the field of healthcare robotics, specifi-
cally the optimization of processes within hospital systems
through the use of reinforcement learning. Common chal-
lenges faced in hospitals included the shortage of personnel,
workplace hazards, and crowded facilities [3]] [4]] [5]. In
particular, nurse burn-out has been a great concern [6]], [7].
These challenges can be addressed by creating robotic agents
capable of navigating through a hospital, in particular patient
rooms in a hospital, and performing tasks that were repetitive
or dangerous to do in certain scenarios, such as administering
medicine.

The distribution of hospital inpatient rooms depends on
several factors, including the size of the hospital, specialty
areas, patient demographics, and operational considerations.
Hospitals typically have multiple floors, each dedicated to
specific departments or medical specialties. Inpatient rooms
are distributed on these floors based on the types of patients
they serve. For example, surgical inpatient units may be
located on one floor, while medical inpatient units are on
another. Inpatient rooms are typically located near essential
hospital services, such as nursing stations, medication rooms,
imaging facilities, and operating rooms. This proximity en-
sures quick access to necessary resources and medical staff.

Fig. [I)illustrates a simple layout of the inpatient rooms in
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FIGURE 1. Distribution of patient rooms. The green boxes represent patient
rooms, the white boxes represent hallways, the red box represents the robot’s
dock, and the black boxes represent areas inaccessible to the robot.

a hospital in one floor. The grid is 10 x 10 with each box
representing one of the following: hallway, hospital room, in-
accessible area, or docking station. The green boxes represent
patient rooms. These are areas the agent will need to visit for
deliveries. The red box represents the robot’s dock, where
it will return to after completing its route. The black boxes
represent areas inaccessible to the robot, such as offices and
closets. The white boxes represent hallways, where the robot
can move freely on its delivery path. The agent is represented
as the blue circle. The white circles are placeholders for the
deliveries the robot is yet to finish. When the agent visits a
room, it “picks up” the room’s delivery circle to show that the
delivery was made. Since there would not be doors between
patient rooms themselves, the robot is unable to pass through
from one green box to another directly. It must return to the
whitespace of the hallway before entering another room. Of
course, a real-world hospital patient room layout would be
much more complex than this figure shows, not to mention
that there are always patients and healthcare staff moving
along the hallways.

In order to understand the status of research in the area,
a comprehensive review of the literature that underpins the
field of reinforcement learning and its applications in the
healthcare sector is imperative. The subject of utilizing ma-
chine learning and algorithms within hospital systems to
optimize the pickup and delivery of essential supplies and
medications to improve the well-being of both the patient
and the healthcare provider was approached through rein-
forcement learning, the Q-learning algorithm and the Python
coding language. This review of the literature predominantly
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centers on an explanation of the task, the significance of
such research, the rationale behind choosing reinforcement
learning coupled with Q-Learning, applications of Al models
and robots in healthcare settings, and gaps in research that
were addressed with the work.

The selection of resources was done in a series of steps
including a search of scholarly and peer-reviewed articles in
digital libraries with filters based on the topic, a thorough
examination of each of the papers, and a final selection of
research papers. In the first step, ScienceDirect, IEEE Xplore,
and Monmouth University’s Hawkfind were utilized to select
sources based on the topics of reinforcement learning, Q-
learning, robotics and Al in healthcare, and gaps that existed
in the research being done. In the second step, the papers
were read through entirely to discover common themes that
could be established between multiple papers. In the last step,
a final selection of papers was conducted based upon sources
that provided data pertaining to the project being done as
well as containing lines of reasoning that could be linked to
multiple other articles.

The rest of the paper is organized as follows: Section II
provides a concise overview of the literature search crite-
ria and selection methodology. Section III examines recent
advancements in reinforcement learning, robotic navigation,
and problem-solving applications within healthcare settings.
Section IV explores key challenges and proposes potential
solutions.

Il. REINFORCEMENT LEARNING

Reinforcement learning, a branch of machine learning,
is an approach in which an intelligent agent is trained to
perform certain tasks [8]]. This entity, called an agent, must
interact with its environment and discover the most optimal
route to accomplish its tasks [8] [9]. The agent(controller)
undergoes positive or negative reinforcement in response to
an action, accessed through the reward and punishment func-
tions [10]]. The agent operates in an unknown environment,
observing its state at each time step and obtaining a reward or
punishment after executing a chosen action [11]]. The policy,
which maps states to actions, is pivotal [[12]]. Reinforcement
learning aims to continuously identify and develop the most
efficient policy to maximize cumulative future rewards. One
commonly adopted method to establish a connection between
actions and rewards involves learning the anticipated quality
of actions in a given state, referred to as Q-Learning [13].
Many RL algorithms employed this method to create a state-
transition system to simulate potential agent movements.
Following each movement, the RL agent accrues a numerical
reward, either a positive or negative number. During the agent
training phase, the Q values are computed and stored as the
agent systematically explores the environment, creating esti-
mates of immediate and long-term action value. This learning
process directs the agent to select actions which will lead to
the highest rewards and thus too proficient task completion.
Based on the research that is done on reinforcement learning,
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its use in the project provided an efficient way to solve the
problem of optimizing supply delivery in hospitals.

The foundation of Q-learning process is a Markov deci-
sion process (MDP), where the states represent the problem
configurations, actions correspond to decisions that change
the state, and rewards indicate the quality of the solutions
obtained. By framing optimization problems in this way, RL
algorithms can learn to navigate the solution space effec-
tively.

A. MATHEMATICAL MODEL

Q-Learning process can be specified by:

Q(st,a4) <+ Q(8¢,ar) + afriyr +ymaraQ(se41, ary1)

—Q(st,a1)]

where Q(s:,a;) is the Q-value for taking action a; in state
S¢, T¢ 1s the instant reward, « is the learning rate, and ~ is
the discount factor, which reflects the importance of future
reward. The objective function of Q-Learning is to find the
policy that maximize the expectation of cumulative reward:

maz B[S 77 (se, ar, $e41)|7]

Q-Learning is a special type of Temporal-Difference (TD)
learning [14], based on Bellman equation. In RL, the state
value function V(s) estimates the value of the current state.
State value V() is related to the value of the current state as
well as all future states. The cumulative reward expectation
weighs in the calculation of a state value s [15]. The corre-
sponding Bellman equation of the state value function is as
follows:

Vi(s) = Ex[repn + 9V (se41)|st = ]

where + is the attenuation coefficient or discount factor. It
reflects the degree that the corresponding agent values the fu-
ture states. The state action-value function of the cumulative
optimal value function V* (s) and Q(s, a) can be expressed
as:

H
V*(s) = mame[Z Y R(Sy, Agy Sev1)|m, S0 = 8]
=0
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Among them, 71 + 7V (s¢41) is the TD objective func-
tion, while 7.1 + v V(st11) — V(s¢) is the TD deviation.
« is the rewarding decay coefficient of the decay rate +.
According to the updated formula of TD(0), we adopted,
the Q value can be derived to obtain the updated formula of
Q-Learning, which is also the Q-Learning mentioned above
definition:

Q(st,at)  Q(s¢,a¢) + afrep1+
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B. BASIC ELEMENTS FOR PATH OPTIMIZATION

1) Environment

The RL environment is composed of the learning agent,
the state set S and action set A, and a few parameters such as
the attenuation factor . Given strategy m, the algorithm goal
is to solve the state value function v(7). RL is a trial-and-
error learning in the environment, in which the experience
is gained through interaction with the environment. In the
example study, the environment is an adaptation of Ope-
nAI’s GridWorld. GridWorld is one of the environments from
OpenAl’s Gymnasium library for RL-related projects. This
interpretation of GridWorld was modeled after a potential
hospital floor plan, including a nurse’s station, where the
robot is dispatched, hospital rooms, and space for private
offices and supply rooms.

2) States

For different applications, the definition of states is differ-
ent. As for the example mentioned above, the state is defined
as the coordinate of the cell where the robot is located.

sefijyi=1,2..n7j=12 ..n

3) Actions

Actions trigger transitions between states, and the agent
transfers from one state to the next through the action.
Without any restrictions, a robot can enter into any of its four
neighboring cells, or stop and drop medications.

a € {forward,left,right, back, stop}

Aside from stop, each action changes the state by increment-
ing or decrementing either 4 or j. Each time an action occurs,
the agent receives a reward for its decision.

4) Rewards

The reward in RL is generally set according to the target
value. To minimize the overall medication delivery time,
rewards are set up as follows: -1 for each step taken by the
agent, -1000 for hitting an obstacle or attempting to move
through walls, 1000 for performing a medication drop-off,
and 100 for returning to its starting place. The final rewards
metric at the end of an agent’s testing indicates how well the
agent learns the environment under the applied parameters.

C. DEEP REINFORCEMENT LEARNING

Deep reinforcement learning is a subset of machine learn-
ing and reinforcement learning that combines the the princi-
ples of reinforcement learning with deep learning techniques
[16] [17]. While reinforcement learning algorithms learn to
make decisions through interactions with the environment
and gain rewards and punishments based on actions taken,
deep reinforcement learning builds on this by utilizing deep
neural networks to represent complex functions [[18] [[19].
These deep neural networks convert states into action values.
Reinforcement learning then takes these action values and
executes an action that relates to it. There are risks associ-
ated with the deployment of robots in real-world systems,
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such as damage to the robot through risky actions. Deep
reinforcement learning decreases the amount of deployments
needed to establish the policy and train, which is beneficial
when it comes to costs associated with training the agent and
avoiding accidents.

D. REINFORCEMENT LEARNING VS. ALTERNATIVE
MODELS

There are three main branches of machine learning - re-
inforcement learning, supervised learning, and unsupervised
learning [20]. Reinforcement learning maximizes the reward
signal by mapping environment states to actions. This type
of learning prioritizes a high reward through a trial-and-error
approach but is somewhat delayed due to the exploration
and training phase. Supervised learning trains a model on a
labeled data set consisting of pairs of input and output data
[21]] [22]. By allowing the model to map known inputs to
actions, it aims to train the model to make predictions on
unseen data. Unsupervised learning aims to train a model
to discover patterns and hidden structures in datasets that
are unlabeled [23]] [24]. Since there are no explicit labels,
the algorithm must create groupings with the input data. For
this reason, reinforcement learning was determined to be the
optimal model to implement due to various reasons - versatil-
ity, adaptability to dynamic environments, and environmental
interaction. When reinforcement learning agents learn poli-
cies through exploration and trial and error, they can apply
these to handle a variety of tasks within an environment [25]]
[26]. In the case of supervised learning, since the models are
given defined training data, they would be unable to adapt to
tasks that go far beyond the scope of the data. Unsupervised
learning models focus more on uncovering patterns within
data rather than task-specific generalizations [27]]. In terms of
adapting to changing environments, reinforcement learning
proves to be the most effective due to the exploratory and
continuous nature of the model [28]].

Since a reinforcement learning agent continuously learns
about the environment and the route that is the most opti-
mized, it would be able to adjust its behavior based on a
changing environment. This is not the case for supervised
learning, where any environment that differs greatly from
the training data would cause the performance of this model
to degrade significantly. Similarly, unsupervised models are
sensitive to changes in data. In the context of hospital systems
that are constantly undergoing changes, or if the robots are
to be relocated to a completely different hospital, reinforce-
ment learning would be the most responsive to the changes
in environment. Lastly, reinforcement learning agents learn
by interacting with the environment to gain either rewards
or punishments [13|]. During the exploration and training
phase, the approach of trial-and-error allows the agent to
make decisions and discover the most optimized route. The
interactive learning and decision-making aspect of reinforce-
ment learning is lost with both supervised and unsupervised
learning [20]. Its ability to be versatile, adaptable to dynamic
environments, and ability to continuously learn and improve
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demonstrates why it was the most effective approach [29].

A relevant approach to finding an optimal solution to a
problem is intelligent search, which refers to algorithms that
systematically explore a problem space to find optimal or
satisfactory solutions, often using heuristics or learned guid-
ance. Many such algorithms have been developed over the
past decades [30] [31]] [32]]. Table 1 provides a comparison
between intelligent search and reinforcement learning. In
general, reinforcement Learning excels in dynamic, uncertain
environments but comes with higher computational com-
plexity due to iterative learning and large state spaces. On
the other hand, intelligent Search is more deterministic and
controllable, often yielding faster solutions when heuristics
are well-designed, but may struggle in environments requir-
ing adaptation or learning. Optimization can also be done
through formal modeling and analysis [33]] [34].

TABLE 1. Comparison between Reinforcement Learning and Intelligent
Search

Aspect Reinforcement Learn- | Intelligent Search
ing (RL)

Learning Learns from interaction | May use heuristics or
and feedback learned guidance

Goal Maximize cumulativere- | Find optimal path or so-
ward lution

Adaptability Highly adaptive over | Depends on search strat-
time egy

Exploration Balances exploration vs. | Explores  based on
exploitation heuristics or rules

Use of Memory | Learns from past experi- | May store past paths or
ences hints

Typical Output Policy or value function Solution path or best

match

In terms of optimal path optimization, A* search is a
powerful and widely used pathfinding algorithm in computer
science and artificial intelligence [35]. It is based on graph
traversal and especially popular in games, robotics, and navi-
gation systems because it finds the shortest path efficiently by
combining the strengths of two other algorithms: Dijkstra’s
algorithm and Greedy Best-First Search. However, A* search
is only applicable to deterministic search problem, in which
a full map of the search area is required. On the other hand,
reinforcement learning can explore unknown area through
interaction with the environment. Considering patients and
medical staff are constantly moving here and there, a hospital
is an ever-changing environment, and thus A* search is not
a good option for solving the delivery path optimization
problem under discussion.

lll. ROBOTICS IN HEALTHCARE

In recent decades, substantial advances have been made
in technology in the fields of computer science, machine
learning, and robotics. Robotics, in particular, has been one
of the most rapidly evolving technologies that is ushering in
a new era of possibilities across numerous industries such
as healthcare, military, entertainment, and others [4]] [22]. In
the healthcare sector, robotics finds applications extending
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to various roles including caregivers (nurses and physicians),
hospital services, delivery, and beyond [3] [36].

A. THE NECESSITY

The necessity of integrating robotics into healthcare has
become more apparent in recent years. As challenges and
workplace hazards continuously arise in hospitals, the well-
being of both caregivers and patients are negatively impacted
[131 (4] [37]] [38]]. This manifests in heightened costs for hospi-
tals, increased stress levels, and diminished quality of life [4].
The global challenges presented by the COVID-19 pandemic
further underscored the critical need for technological solu-
tions when issues such as increased risk of contracting the
disease, lack of healthcare centers and services and lack of
staff were revealed. Healthcare workers are continuously ex-
posed to occupational hazards such as bloodborne pathogens,
infections, and other healthcare associated diseases [38]]. The
persistent issue of staff shortages, particularly in nursing,
have exacerbated the problem [4]]. This leads to the remaining
nurses, doctors, and other caregivers shouldering extended
and exhausting work hours, as they must manage more pa-
tients while working considerably longer shifts. This scenario
directly contributes to fatigue and burnout, which can pose
potential repercussions on patient/caregiver health and the
quality of care provided. As advancements in technology and
medicine continue to progress, an ever-aging population and
escalating number of patients imposes an additional burden
on hospitals. The increasing patient influx drains hospital
resources, leading to crowded facilities, stretched staffing
levels, and competition for essential services and equipment
[4]. As a consequence, patients must endure longer waiting
times, delayed treatments, and a general decrease in quality
of care. For healthcare professionals, an increasing patient
load causes increased work pressure and prolonged working
hours. Continually participating in repetitive tasks, such as
the distribution of medications in expansive hospitals, places
a physical strain on the staff [5]]. As a result, a decline in the
mental and physical well-being of the caregiving workforce
is inevitable. Patients experience the negative implications
of these challenges, and reduced personalized attention, in-
ability to receive resources, and prolonged waiting times can
potentially lead to distrust in the healthcare system and long-
term consequences in patient health. A common theme estab-
lished in the reviewed literature demonstrates the necessity
of integrating robots into hospital operations. In order for
hospitals to address the issues raised by aging populations,
increasing patient load, staffing shortages, health risks, and
other concerns, hospitals must incorporate robots capable of
navigating optimized routes for efficient resource delivery to
patients.

B. BENEFITS OF ROBOTIC AUTOMATION

The benefits of robotic automation in hospital settings are
numerous. For example, robotic automation can streamline
repetitive processes such as patient scheduling, billing, and
claim processing, freeing up staff to focus on patient care.
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It can also help reduce human error in data entry, med-
ication management, and record-keeping, leading to safer
and more reliable care. By cutting down on labor-intensive
tasks, reducing operational costs and allowing resources to be
redirected to critical care areas. Automation will also result
in faster service, fewer delays, and more accurate information
contribute to higher patient satisfaction.

Hojjat et al. present our recent research on integrating
artificial emotional intelligence in a social robot, named
Ryan, and studies the robot’s effectiveness in engaging older
adults [39]. Robot systems are employed in home care.
To increase task execution efficiency, Zhu et al. propose a
smart home system architecture that integrates a mobile robot
with better event perception and task execution performance
[40]. The adoption of social robots, an emerging field of
significance as these technologies become more ingrained
in daily life, was investigated in [41], and revealed that
human-like qualities such as appearance and behavior play
a vital role in perceived enjoyment and social attraction.
Considering the ever-increasing aging population in China,
Yu et al. introduced a massage robot, designed to replicate the
seated knee adjustment manipulation, a specific traditional
Chinese medicine technique [42]. In [43]], Chang et al. pre-
sented an interactive healthcare question answering system
that uses attention-based models to answer healthcare-related
questions. The system employs attention-based transformer
models to efficiently encode semantic meanings and extract
the medical entities inside the user query individually.

In terms of robot navigation, Shi et al. [44] proposed
an end-to-end navigation planner that translates sparse laser
ranging results into movement actions. The agents trained
by simulation agents can be extended to the real scene for
practical application. A study on human-awareness of social
robot navigation is presented in [45]. In [46], Zhu et al.
conducted a survey on robot navigation based on reinforce-
ment learning. The hospital is a complex environment with
patients and medical staff constantly moving here and there.
Zhao et al. [47]] present an improved reinforcement learning-
based algorithm for local path planning that allows robots
to perform well when there are more dynamic obstacles. In
Day2024, Day et al. introduce a new human-robot interaction
dataset focusing on interactions between humans and small
differential drive robots running different types of controllers.
In [48]], Mulvey et al. propose the novel design of a de-
formable mobile robot. A deformable mobile robot can adopt
a wider or narrower stance to fit the environment.

C. SERVICE ROBOTS IN HOSPITALS

Nowadays, service robots are seen in hospital corridors.
Robots in nursing can handle less technical tasks such as
patient transport and rehabilitation activities. This support
allows caregivers to focus on less strenuous nursing duties
and more direct patient care [49]. In [50], the authors review
the benefits of the use of social robots to patients, healthcare
workers, customers, and organizations during the COVID-
19 pandemic, provide a view of the emerging focal issues
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for healthcare services, such as logistics of patients and sup-
plies. Considering the rapidly aging population and pressure
on healthcare services, Broadbent et al. provide review on
human responses to healthcare robots and summarizes the
variables that have been found to influence responses in [|51].
In [52f, Wang et al. presented a portable back massage robot
which can complete the massage operations such as tapping,
kneading and rolling was designed to improve the level of
intelligence and massage effect. In the case of infectious
diseases, medical staff should refrain from directly contact
patients, service robots can play a big role [53]], [54]. In
[55]l, Shen et al. provide a survey based on over 200 reports
covering robotic systems which have emerged or have been
repurposed during the past several months, to provide in-
sights to both academia and industry. A smart sterilization
robot system is also developed to spray disinfectants in
operating theaters or patients’ rooms, designed according to
the results of controlled experiments and the requirements
for hospital disinfection in [56]]. In [57]], a review by the
authors found that robots have played 10 main roles across
a variety of clinical environments, with the two predominant
roles being surgical and rehabilitation and mobility.

When considering current delivery robots, such as TUG
mobile robots, the advantages of using reinforcement learn-
ing become apparent [58] [19]. TUG robots consist of a
battery, load and carrying modules, and a control unit with
features such as hazard detection, door and elevator opening
skills, and “speaking” ability. The applications of this deliv-
ery robot include delivering resources such as medications,
food service, and loading and unloading carts of medical
supplies. Some instances where the TUG delivery robot
proved effective in hospital systems include its use in El
Camino Hospital in California and Children’s Hospital in
Boston. In El Camino, once hospital management realized
that the distances between departments were large and would
cause increased costs and wasted time in delivery of supplies
such as food, linens, and medicine, the TUG system was
installed. With these robots, 80 percent of the delivery within
that hospital system was able to be automated, saving the
hospital considerable amounts of money.

D. REINFORCEMENT LEARNING FOR ROBOT
NAVIGATION

Reinforcement learning (RL) has become a powerful ap-
proach for robot navigation, enabling robots to learn optimal
movement strategies through trial and error in complex envi-
ronments. Key techniques include deep Q-networks (DQN),
which learns value functions for discrete actions; proximal
policy optimization (PPO), which balances exploration and
exploitation for continuous control; and twin delayed deep
deterministic policy gradient (TD3), which is used for stable
learning in continuous action spaces. Mobile robot naviga-
tion normally is normally composed of path planning and
obstacle avoidance.

Many research results have been reported in this area
in recent years. Zhu and Zhang provide a comprehensive
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review on deep reinforcement learning-based mobile robot
navigation in [59], which discuss four typical application
scenarios: local obstacle avoidance, indoor navigation, multi-
robot navigation, and social navigation. In [60], a review on
bioinspired robots (BIRs), which can learn to locomote or
produce natural behaviors similar to animals and humans,
is conducted. In [61]], a multimodal locomotion framework
is presented that is composed of a hand-crafted transition
motion with a learning-based bipedal controller. A new a
new local navigation method for steering the robot to global
goals without relying on an explicit map of the environment
is presented in [62], in which the model is trained based
on the Advantage Actor—Critic method. Similar works are
presented in [63]] [64], where a reinforcement learning-based
path generation approach is used for mobile robot navigation
without a prior exploration of an unknown environment. In
[65]], autonomous navigation task in large-scale environments
with crowded static and dynamic objects using graph rela-
tional reinforcement learning.

IV. DISCUSSIONS
A. THE "REALITY GAP"

Although previous research has been done in the realm of
reinforcement learning in robotics, notable gaps still remain.
One such issue is the ’reality gap’ that exists between the
virtual and the real world [66] [67]. Due to the disparities
between complex systems in the real world and the virtual
world, developing reinforcement agents is a difficult task.
The performance of reinforcement learning agents trained in
virtual settings decreases as the real-world system with which
the robot will interact becomes more complex. Since research
on lessening the gap between the virtual real world is still
being conducted, a common method is used, called ’"domain
randomization’. This method aims to introduce changes into
the environment by randomizing or altering certain elements
rather than training in a static environment. This method
addresses the challenge of the agent to adapt to a dynamic
environment, which is one of the largest issues pertaining
to the “reality gap”. The project aimed to further the bridge
of the reality gap using both randomization and simulation
of the hospital floor with utmost precision. During each run
of the program, the user was prompted to enter x and y
values for coordinates of obstacles that were placed into the
virtual environment. By allowing the user to pick where the
obstacles were being placed with each run of the program, the
agent was trained in a dynamic environment. An additional
strategy that was incorporated into the program was virtual
hospital walls to simulate the layout of real hallways in
hospital systems. With this, the real world was simulated as
closely as possible in order to bridge the gap between both
domains.

B. IMPLEMENTATION CHALLENGES IN HOSPITALS

Another gap being addressed by researchers is the failure
of most hospitals to incorporate fully functional Al sys-
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tems [[68]]. Although service robots have increasingly been
researched and incorporated into many areas in recent years
due to their various benefits, their implementation and scaling
are still difficult obstacles to overcome. Only a small group
of hospitals that implemented these robots were able to
keep utilizing them. This is in part due to challenges faced
when placing the robots into real-world environments that
are constantly changing and the expensive programming of
such robots. Previously, hospitals would resort to robots that
required a map of the environment and large amounts of
manual coding to perform tasks such as delivery, food ser-
vice, and more [69]. In the case of TUG robots, this strategy
seemed to work. However, when it comes to environments
that are constantly changing or when the robots are moving
to a whole different environment, this method becomes less
effective. The current project tackled these challenges by im-
plementing a mix of Q-Learning and reinforcement learning.

C. ADDRESSING CONCERNS

Robots are proficient in their abilities to take over simple
tasks once handled by humans, such as assembly jobs and de-
livery services [70]. With recent advancements in technology,
the capabilities of robots skyrocketed, and more complex
physical and cognitive jobs can be carried out by robots,
such as identifying signs of dementia in patients as well as
detecting hazards in stores. However, with the increased in-
tegration of Al and robotics into various industries, potential
concerns have been posed by those working alongside them
[69]. According to a report in 2018, 30-65 percent of jobs
face the potential of automation, putting them at risk of being
replaced by robots [71]]. For those whose jobs are included
in this statistic, they may experience “service robot risk
awareness”. This means that job insecurity is instilled into
those whose industries introduce and adopt service robots
[71]. The workplace is undergoing rapid transformations, and
a growing number of employees have expressed concerns
with keeping up with robots that could replace them [72].
While the displacement of jobs appears to be a tangible risk
with the increase in robotics and Al in a plethora of sectors,
an opportunity arises for the creation of new jobs [[70]. Jobs
such as managing and maintaining such technology as well
as developing it can create new positions to be filled while
improving efficiency in service roles.

Another issue posed by the adoption of robots into indus-
tries is the frustration that is caused by lack of autonomy
in jobs that can be automated [71]. However, this issue
can be mitigated with collaborative robots that enhance the
effectiveness and safety of employees. Robots lack emotional
intelligence as well as social skills, and this is where the
opportunity for collaboration between robots and humans ap-
pears. In jobs characterized by the necessity of a large social
presence as well as complex emotional responses, the need
for such collaboration becomes obvious [[71]. While robots
and Al handle more routine tasks, professionals can focus
on more engaged and personalized care [/2]]. A prevalent
theme in the literature reviewed in this section is the positive
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impact that is offered by the integration of robots and Al into
industries such as healthcare.

While job displacement and the fears and frustrations of
employees are issues that must be addressed, there are nu-
merous benefits that can be reaped through the collaborative
effort between robots and humans. Also, the new job oppor-
tunities that are created, along with the increased safety and
efficiency of workers, demonstrates the positive trajectory of
the evolving workplace [72]. The current project aimed to
utilize a mix of reinforcement learning with Q-learning to
train an agent to navigate through a virtual hospital floor.
When the program is implemented in real life, a service robot
can use the same programming to carry out various tasks and
reap the benefits mentioned.

V. CONCLUSIONS

This review of the literature explores the conceptual
foundation, methodology, and applications of reinforcement
learning in the domain of healthcare robotics. It demonstrates
the importance of utilizing machine learning algorithms
to streamline and automate operations in hospital settings,
such as essential resource delivery. The choice of applying
reinforcement learning to approach the route optimization
problem in hospitals was justified through a comparison with
alternative methods. The adaptability, versatility, and con-
tinuous learning capabilities of reinforcement learning are
highlighted in this comparison, making it apparent that this
solution is the most effective. The evolving role of robots is
also discussed in the review, as the many challenges faced by
hospitals can be mitigated through the use of service robots
trained with reinforcement learning. Research gaps, such as
the “reality gap” are addressed and solved through domain
randomization and non-static programmable environments.
Additionally, ethical concerns such as job displacement and
frustration are prioritized, and solutions to these issues are
presented.
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