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ABSTRACT Patients with end-stage renal disease often exhibit attention, memory, and executive
dysfunction, reducing quality of life and increasing mortality risk. Hemodialysis and peritoneal dialysis
are common treatments, but their effects on dynamic brain organization remain unclear. Resting-state
functional magnetic resonance imaging data were collected from healthy controls and patients undergoing
hemodialysis or peritoneal dialysis. Dynamic functional connectivity analysis with hidden Markov modeling
and support vector machine classification characterized temporal and network alterations. Hemodialysis
patients showed higher fractional occupancy (p = 0.0015, d = 1.03) and longer life time (p = 0.0066, d
= 0.87) in State 1, indicating rigid network engagement. Peritoneal dialysis patients had preserved state
proportions but elevated switching rates (PD vs NC: p = 0.0222, d = 0.58; PD vs HD: p = 0.0022, d =
0.99), reflecting excessive state transitions. Functional analysis revealed frontoparietal and dorsal attention
network abnormalities in hemodialysis patients, whereas peritoneal dialysis patients displayed default mode
network imbalances.Support vector machine classification confirmed these patterns (highest AUC = 0.876).
Hemodialysis patients exhibited more rigid and less adaptive dynamics, while peritoneal dialysis patients
showed hyperactive but unstable transitions. Dialysis-specific alterations underscore the impact of treatment
type on neural dynamics and suggest that brain network metrics may serve as sensitive imaging biomarkers
for early cognitive impairment in end-stage renal disease.

INDEX TERMS Cognitive impairment, Dialysis modality, Dynamic functional connectivity, Support
vector machine

I. INTRODUCTION

CHRONIC kidney disease (CKD) is a progressive dis-
ease resulting from multiple etiological factors, includ-

ing diabetes, hypertension, and glomerulonephritis [1], [2].
It is defined by a sustained reduction in glomerular filtration
rate (GFR) [3]. As the disease progresses, a subset of patients
develops end-stage renal disease (ESRD), necessitating renal
replacement therapies such as hemodialysis (HD), peritoneal
dialysis (PD), or kidney transplantation [4]. Epidemiological
evidence indicates that cognitive impairment is prevalent
among ESRD patients, with deficits commonly observed in
attention, processing speed, executive function, and mem-

ory. The reported prevalence of cognitive impairment ranges
from 25–51% in patientsnot yet on dialysis [5] , 30–70%
in HD patients [6], [7], and 19–29% in PD patients [8],
with increasing incidence associated with advancing age
and disease duration. Cognitive decline not only diminishes
quality of life and social functioning but also correlates with
adverse clinical outcomes. However, conventional cognitive
assessment tools, such as the Mini-Mental State Examination
(MMSE) and the Montreal Cognitive Assessment (MoCA),
demonstrate limited sensitivity in detecting mild cognitive
impairments. Similarly, standard structural magnetic reso-
nance imaging (MRI) often fails to detect subtle cerebral
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alterations. In recent years, resting-state functional MRI (rs-
fMRI) has emerged as a promising non-invasive technique
[9] for investigating the neural mechanisms underlying cog-
nitive impairment in ESRD, offering potential for the identi-
fication of early biomarkers and improved clinical manage-
ment.

Most traditional studies of resting-state functional connec-
tivity (FC) operate under the assumption that brain networks
remain temporally invariant throughout the scanning period.
This static analytical approach is insufficient to fully cap-
ture the dynamic and time-varying nature of brain activity
[10]–[15]. Accumulating evidence suggests that functional
connectivity exhibits temporal fluctuations and is closely
associated with cognitive states, psychiatric disorders, and
neurological conditions. Dynamic functional connectivity
(dFC) enables the detection of recurrent transitions between
brain networks, revealing temporal features that cannot be
captured using static FC approaches. In the context of ESRD,
particularly under different dialysis modalities, investigations
into brain network dynamics remain limited, despite their
potential significance in elucidating the mechanisms of cog-
nitive dysfunction [16]–[19].

Current dFC methodologies, such as the sliding win-
dow approach and leading eigenvector dynamics analysis
(LEiDA), have been widely employed in resting-state fMRI
studies. The sliding window method estimates time-varying
correlations by computing connectivity within a moving win-
dow; however, its outcomes are highly sensitive to the selec-
tion of window length, shape, and overlap, which lack uni-
versally optimal parameters. Moreover, this approach suffers
from limited temporal resolution—short windows increase
temporal sensitivity but may introduce instability, whereas
long windows provide smoother estimates but obscure rapid
state transitions. It also assumes local stationarity of neural
signals, making it less suitable for capturing nonstationary
dynamics and possibly introducing spurious fluctuations in
connectivity. LEiDA, on the other hand, characterizes dy-
namic brain activity by tracking the leading eigenvector of
instantaneous phase coherence, thereby revealing recurrent
patterns of whole-brain synchronization. Despite its strengths
in identifying global phase-alignment states, LEiDA remains
sensitive to noise and parameter selection, and it primar-
ily reflects dominant connectivity patterns while potentially
overlooking subtler or transient dynamics. In addition, its
computational complexity can be high when applied to large-
scale data, which may limit its practicality in clinical popula-
tions. [20]–[27].

In contrast, the hidden Markov model (HMM) provides
a more flexible and statistically principled framework for
modeling dynamic brain states [28], [29]. HMM does not
rely on predefined temporal windows or phase-dominant
components; instead, it directly estimates the probability of
latent brain state activation at each time point. This proba-
bilistic representation allows precise characterization of state
transitions and accommodates nonstationary neural signals
without assuming temporal smoothness. Previous research

has demonstrated that HMM can effectively identify dynamic
differences between healthy individuals and patient popula-
tions [30]–[32]. Its related indicators, such as fractional oc-
cupancy (FO), life time (LT), and number of transitions (NT),
provide valuable information for the stability and adaptability
of brain networks. Based on this theoretical framework, we
hypothesize that ESRD patients undergoing different dialysis
modalities may exhibit distinct alterations in dynamic brain
network patterns. These changes may contribute to a deeper
understanding of cognitive impairment and provide potential
neuroimaging biomarkers.

In the present study, we applied the HMM framework
to resting-state fMRI data from ESRD patients. We con-
ducted a systematic comparison of dynamic brain network
characteristics among healthy controls (normal control, NC),
HD patients, and PD patients. Furthermore, we integrated
machine learning techniques with cognitive assessments to
enhance the interpretability of our findings. We hypothesize
that HD and PD patients exhibit distinct patterns of dynamic
connectivity within key functional networks, and these fea-
tures may serve as important foundations for understanding
cognitive impairment and identifying potential neuroimaging
biomarkers.

II. MATERIALS AND METHODS

A. DATA ACQUISITION

A total of 44 patients with ESRD and 47 healthy controls
(normal control, NC) were recruited for this study. ESRD
patients were further categorized into the peritoneal dialysis
group (PD, n = 25) and the hemodialysis group (HD, n
= 19) based on their respective treatment modalities. All
participants were matched with the control group in terms
of age, sex, and years of education.

The inclusion criteria for ESRD patients were as follows:
(i) diagnosis of ESRD in accordance with the National Kid-
ney Foundation Kidney Disease Outcomes Quality Initiative
(NKF KDOQI) guidelines; (ii) undergoing maintenance dial-
ysis two to three times per week for a minimum of three
months; (iii) no prior history of kidney transplantation or
acute renal failure.

The exclusion criteria for ESRD patients were as follows:
(i) history of alcohol or substance abuse; (ii) history of trau-
matic brain injury or psychiatric disorders; (iii) presence of
other neurological conditions such as stroke or brain tumors.

For healthy volunteers, the inclusion criteria were defined
as: (i) matching with ESRD patients in age, sex, and edu-
cational background; (ii) normal renal function confirmed by
clinical evaluation. The exclusion criteria for healthy controls
were identical to those applied to the ESRD group.

B. DATA PROCESSING AND ANALYSIS

Demographic information including age, sex, and educa-
tion was collected. MRI data were acquired on a Magnetom
Skyra 3.0 T scanner (Siemens, Germany) using a 32-channel
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phased-array head coil. Both structural and functional images
were obtained.

For structural imaging, a 3D T1-weighted MP-RAGE se-
quence was used with the following parameters: repetition
time (TR) = 2000 ms, inversion time (TI) = 880 ms, echo
time (TE) = 2.01 ms, flip angle (FA) = 8°, matrix = 256 ×
256, field of view (FOV) = 256 × 256 mm2, sagittal total
thickness = 208 mm, thickness = 1 mm.

For functional imaging, single excitation gradient echo-
echo planar imaging (SS-GRE-EPI) was applied with the
following parameters: TR = 2000 ms, TE = 30 ms, FA = 90°,
matrix = 64 × 64, FOV = 224 × 224 mm2, layer thickness =
4 mm, number of layers = 36, number of repetitions = 180, fat
suppression on, and parallel imaging factor = 2. During the
scan, participants were instructed to close their eyes, remain
still, stay awake, and stay relaxed.

Preprocessing was performed using SPM8 (http://www.fil.
ion.ucl.ac.uk/spm) and DPARSFA toolboxes [33]. The first
10 time points of each scan were removed to avoid signal
instability. The remaining images were normalized to MNI
space and resampled to 3× 3× 3 mm3 voxels. Confounding
covariates including cerebrospinal fluid, white matter signals,
and head motion were regressed out using the Friston model.
A band-pass filter of 0.01–0.08 Hz was applied and linear
trends were removed. The preprocessed fMRI data were
parcellated into 90 regions of interest (ROIs) based on the
Automated Anatomical Labeling (AAL90) atlas [34].

C. COGNITIVE ASSESSMENT

Cognitive function was assessed with the Mini-Mental
State Examination (MMSE) and the Montreal Cognitive As-
sessment (MoCA) [35]. The MMSE has been widely used
to screen for moderate to severe cognitive impairment and is
particularly suitable for individuals with lower educational
levels. MoCA complements MMSE and is more sensitive
for detecting mild cognitive impairment. All participants
completed MMSE and MoCA assessments within one week
prior to MRI scanning to quantify overall cognitive function.

D. HIDDEN MARKOV MODELING

Dynamic brain states were analyzed using the hidden
Markov model (HMM). The assumption of HMM in brain
dynamics is that fluctuations of brain activity can be ex-
plained by a finite number of discrete and recurring hidden
states through the time series of brain regions of interest
(ROIs). At each time point t, the brain is assumed to be in
a latent state Zt. The distribution of each hidden state j was
modeled by a multivariate Gaussian distribution, parameter-
ized by a mean activation vector µj and covariance matrix
Σj , as shown in Eq. (1):

Xt | Zt = j ∼ N (µj ,Σj), (1)

where µj represents the average functional activity of state j,
and Σj (a 90 × 90 covariance matrix) reflects the functional
connectivity structure among brain regions within that state.

Another essential property of HMM is the probability
of transitions between states, which can be described by a
transition probability matrix Aij . It defines the likelihood of
switching from state i at time t − 1 to state j at time t. This
is expressed in Eq. (2):

Pr(Zt = j) =

M∑
i=1

Aij Pr(Zt−1 = i), (2)

where M is the total number of hidden states. The most
probable state at time t is selected according to the maximum
posterior probability.

The HMM was implemented using the Hidden Markov
Model–Multivariate Autoregressive (HMM-MAR) toolbox
(https://github.com/OHBA-analysis/HMM-MAR) in MAT-
LAB [36], with inference performed using variational
Bayesian methods. For each participant, time series from
90 ROIs (170 time points) were extracted, normalized, and
concatenated across subjects as model input.

To determine the optimal number of hidden states, we
followed previous studies and systematically varied M from
2 to 20. For each M , the model was trained 100 times
with different random initializations to ensure convergence
stability [37]. Model performance was evaluated using two
complementary criteria: variational free energy and state
fractional occupancy. Variational free energy quantifies the
trade-off between model fit and complexity—lower values
indicate a more optimal balance and better convergence.
State fractional occupancy reflects the proportion of time
each state is active across the time series, ensuring that all
states are meaningfully utilized rather than being redundant
or underrepresented.

By averaging the free energy and median fractional oc-
cupancy across repetitions, we identified M = 4 as the
optimal number of states. This choice satisfied two criteria:
(1) the model achieved the lowest average free energy, and
(2) all states exhibited stable and non-negligible occupancy,
indicating effective utilization. This selection balances model
parsimony and representational capacity, avoids overfitting,
and ensures robust characterization of dynamic brain states.

Each identified state was subsequently represented by its
Gaussian parameters (µj ,Σj), allowing detailed examina-
tion of the corresponding dynamic functional connectivity
patterns.

To better explain the changes in the connection patterns of
brain networks, we divided the 90 ROIs into 7 brain networks
defined by Yeo et al. [38] (Default Mode Network, DMN;
Frontoparietal Network, FPN; Salience Network, SN; Dorsal
Attention Network, DAN; Sensorimotor Network, SMN; Vi-
sual Network, VN; Limbic Network, LN). This allowed us to
further analyze the connection patterns within and between
networks in each state.

E. TEMPORAL FEATURES AND STATISTICAL ANALYSIS

To quantify group differences (NC, HD, PD) in the dy-
namic properties of hidden brain states, three temporal met-
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FIGURE 1: Schematic illustration of the hidden Markov
model (HMM) analysis pipeline. For each subject, BOLD
signals were first parcellated according to the AAL atlas
to extract regional time series. These time series were then
modeled using HMM to infer dynamic brain states, yielding
individual state transition sequences across 170 time points.
From the estimated states, several features were derived,
including the mean activation of HMM states, fractional oc-
cupancy, state-specific functional connectivity patterns, and
the proportion of subjects occupying each state at each time
point.

rics were computed from the decoded state time series, for
each participant. 1. Fractional occupancy (FO): the propor-
tion of time spent in a specific state relative to total scan
duration, reflecting overall tendency and persistence in that
state. 2. Life Time (LT): the average duration of consecutive
time points in a given state, reflecting stability and continuity
of that state. 3. Switching rate (SWT): the total number of
transitions between states divided by scan length, reflecting
the frequency and flexibility of state switching.

Group differences in FO, LT, and SWT were assessed
using two-sample t-tests for each pair of groups. Effect sizes
were quantified using Cohen’s d to provide standardized
measures of group differences beyond statistical significance.
All statistical analyses were conducted in MATLAB, and
significance was set at p < 0.05.

F. SUPPORT VECTOR MACHINE CLASSIFICATION

Support vector machine (SVM) classification was applied
to differentiate between groups. Input features included frac-
tional occupancy (FO), mean lifetime (LT), switching rate
(SWT), and static functional connectivity (sFC). For the
sFC features, a one-way analysis of variance (ANOVA) was
conducted across the three groups (NC, HD, PD), and only
edges with significant group differences (p < 0.001) were
retained:

F =
MSbetween

MSwithin
, p = P (F ≥ Fobs), (3)

where MSbetween and MSwithin are the mean square values
between and within groups, respectively.

All features were rescaled to the range [−1, 1]:

xnorm
i =

2(xi −min(x))

max(x)−min(x)
− 1. (4)

The binary SVM classifier aimed to find the optimal sepa-
rating hyperplane

f(x) = wTϕ(x) + b, (5)

by solving the optimization problem

min
w,b,ξ

1

2
∥w∥2 + C

N∑
i=1

ξi,

s.t. yi
(
wTϕ(xi) + b

)
≥ 1− ξi,

ξi ≥ 0,

(6)

where yi ∈ {0, 1} denotes the class label, C is the penalty
parameter, and ϕ(·) represents the feature mapping induced
by the kernel. A radial basis function (RBF) kernel was used:

κ(xi,xj) = exp(−γ∥xi − xj∥2), (7)

with γ controlling the kernel width. The decision function is
given by

ŷ = sign

(
N∑
i=1

αiyiκ(xi,x) + b

)
, (8)

where αi are Lagrange multipliers.
Model parameters C and γ were optimized by grid search

with leave-one-out cross-validation (LOOCV). Classification
tasks included three pairwise comparisons (NC vs. HD, NC
vs. PD, HD vs. PD) and one three-class classification (NC,
HD, PD) using the one-vs-one scheme with majority voting.

Model performance was quantified using accuracy, F1
score, receiver operating characteristic (ROC) curves, and the
area under the curve (AUC).

Accuracy is defined as the proportion of correctly classi-
fied samples:

Accuracy =
TP + TN

TP + FP + TN + FN
, (9)

where TP , TN , FP , and FN represent true positives, true
negatives, false positives, and false negatives, respectively.

The F1 score is defined as the harmonic mean of precision
and recall:

F1 =
2 · Precision · Recall
Precision + Recall

, (10)

with

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
. (11)

For multi-class classification, the one-vs-one strategy was
applied, and the macro-averaged F1 score was used:

F1macro =
1

K

K∑
k=1

F1k, (12)

where K denotes the number of classes and F1k is the F1
score for class k.
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ROC curves are obtained by plotting the true positive rate
(TPR) against the false positive rate (FPR):

TPR =
TP

TP + FN
, FPR =

FP

FP + TN
. (13)

The area under the ROC curve (AUC) is calculated as:

AUC =

∫ 1

0

TPR(FPR) d(FPR), (14)

which reflects the overall discriminative ability of the classi-
fier, independent of threshold selection.

G. IDENTIFICATION OF CONSENSUS CONNECTIONS

To determine the impact of different dialysis modalities
on functional connectivity in ESRD patients, we compared
the mean connectivity strength of each edge between the HD
and PD groups. Two-sample t-tests were applied to identify
significant differences, and only those edges that consistently
survived across iterations were retained as consensus con-
nections. This strategy reduced false positives caused by ran-
dom fluctuations and highlighted highly stable abnormalities.
Finally, the identified consensus connections were mapped
from the AAL90 template to the Yeo7 functional networks,
allowing us to investigate the influence of dialysis modalities
on brain network organization at the systems level.

H. CORRELATION WITH COGNITIVE FUNCTION

To explore the clinical relevance of dynamic features,
correlations between dFC metrics and cognitive performance
were examined. Spearman rank correlations were performed
between FO, LT, and SWT and neuropsychological scores
including MMSE and MoCA.

III. RESULTS

A. STATE CHARACTERISTICS

The HMM analysis identified four functional connectivity
states that differed mainly in the dominant roles of specific
networks. Each HMM state is described by the average activ-
ity intensity of 90 brain regions in Fig. 2 and the connection
strength in Fig. 3 between the involved brain regions.

State 1 was characterized by strong connections within
the FPN and VN, accompanied by increased activity in the
SMN and DMN. Cross-network connections were relatively
weaker, especially between subcortical structures and the
FPN, DMN, and SN.

State 2 showed a prominent synergy between the VN
and DMN, with strong connections concentrated within the
visual cortex and the DMN. Weak connections were mainly
observed between subcortical structures and the FPN and
SMN.

State 3 was characterized by enhanced coupling between
the FPN and subcortical structures, together with strong
connections in the VN and SN. The SMN was relatively
suppressed in this state.

FIGURE 2: The activity intensity of brain regions in states 1-
4.The 3D graphics in this figure were created using BrainNet
Viewer Version 1.7 (https://www.nitrc.org/projects/bnv/).

FIGURE 3: The functional connection mode of the latent
state.

State 4 was marked by increased activity in the SMN
and SN, while the VN and DMN maintained strong within-
network connectivity. Overall, the four states reflected dis-
tinct organizational patterns of large-scale networks.

B. TEMPORAL PROPERTIES

We next compared the three groups with respect to FO, LT,
and SWT. The detailed ANOVA and post-hoc results for all
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temporal metrics are summarized in TABLE 1.
For FO, significant group differences were observed in

State 1 (p < 0.001) and State 3 (p = 0.048). In State 1,
HD patients showed markedly higher FO compared with
both PD (p = 0.0015, d = −1.03) and NC (p < 0.001,
d = 1.35), indicating that hemodialysis patients were more
likely to remain in this state. In contrast, FO in State 3 was
significantly lower in HD patients than in NC (p = 0.016,
d = −0.67) and showed a marginally lower trend compared
with PD (p = 0.0619). No significant group differences were
found in States 2 or 4.

For LT, ESRD patients exhibited significantly longer LT in
State 1 compared with NC (p = 0.002, d = 0.67), suggesting
that they tended to stay longer in this state. Further three-
group comparisons revealed that HD patients had signifi-
cantly higher LT in State 1 (p < 0.001), with post-hoc tests
showing higher values in HD than in both PD (p = 0.0066,
d = −0.87) and NC (p < 0.001, d = 1.22). No other states
showed significant group differences.

For SWT, significant differences were found across groups
(p < 0.01). PD patients exhibited significantly higher switch-
ing rates than both NC (p = 0.0222, d = 0.58) and
HD (p = 0.0022, d = 0.99), indicating greater temporal
variability in brain state transitions. No significant difference
was observed between HD and NC.

Overall, HD patients tended to remain longer in a specific
state (State 1), whereas PD patients exhibited higher transi-
tion frequencies, reflecting distinct patterns of dynamic brain
network flexibility between dialysis modalities.

C. SVM CLASSIFICATION

In the SVM classification analysis, we first applied one-
way ANOVA based on static functional connectivity to
identify 233 functional connections with significant group
differences, thereby reducing the feature space while pre-
serving the most discriminative connections. These features
were then concatenated with the FO, LT, and SWT indices
derived from each state to construct the final feature set for
classification.

In pairwise classification, the best performance was
achieved in distinguishing NC from HD, with an accuracy
of 91% and an AUC of 0.876. The accuracy for NC versus
PD was 83% (AUC = 0.855), while that for HD versus PD
was 84% (AUC = 0.834), indicating that the two dialysis
modalities also exhibited considerable discriminability.

In the three-class classification task, the model achieved
an overall accuracy of 80% with a macro-F1 score of 0.78,
suggesting balanced performance across the three groups.
ROC curve analysis further revealed that NC was recognized
most accurately (AUC = 0.882), followed by HD (AUC =
0.869), whereas PD was more challenging to classify (AUC
= 0.845) and tended to be misclassified as NC or HD.The
overall micro-average AUC reached 0.873. These results are
illustrated in Fig. 4, which shows the ROC curves for the
three-class classification task, further demonstrating that PD
patients exhibit altered brain networks, but these alterations

FIGURE 4: Receiver operating characteristic (ROC) curves
for the overall three-class classification. One-vs-rest ROC
curves are presented for each group (NC, HD, and PD),
together with the micro-average curve across all classes.
The corresponding area under the curve (AUC) values are
reported in the legend.

are less pronounced than those in HD patients, reflecting an
intermediate pattern of disruption.

D. CONSENSUS CONNECTIONS

In the comparison between PD and NC, a total of 95 con-
sensus connections were identified. These abnormal connec-
tions were primarily distributed across the VN, the SN, the
DMN, and subcortical regions. Enhanced coupling between
the medial superior frontal gyrus and the anterior cingulate
cortex indicated a compensatory upregulation within the
DMN, whereas weakened connections between visual cor-
tices such as the cuneus and middle occipital gyrus with the
supramarginal gyrus suggested impaired pathways for visual
information integration and attentional shifting. Moreover,
several weakened connections between the supramarginal
gyrus and the thalamus revealed reduced coordination be-
tween subcortical regions and the , which may compromise
the selective modulation of sensory inputs.

In the comparison between HD and NC, 199 consensus
connections were detected, reflecting more extensive and
stronger abnormalities. These alterations involved the SN,
SMN, VN, and subcortical regions. The most significant
connections were largely characterized by strengthened intra-
network coupling or bilateral homotopic synchronization,
including enhanced connections between bilateral amygdala,
hippocampus, occipital cortices, and supramarginal gyri.
Such patterns suggest that the alterations in HD patients
extend beyond inter-network interactions and involve patho-
logical hyper-synchronization within networks. Particularly,
the markedly increased coupling between bilateral auditory
cortices and supramarginal gyrus within the SMN indicates
abnormal processing or integration of external stimuli and
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TABLE 1: Group comparisons of temporal properties (Fractional Occupancy, Mean Life Time, and Switching Rate) among
PD, HD, and NC groups. Values represent ANOVA and post-hoc results. Significant results (p < 0.05) are shown in bold.

Metric State ANOVA p PD–HD p Cohen’s d PD–NC p Cohen’s d HD–NC p Cohen’s d

FO

State 1 0.0000 0.0015 -1.0308 0.3465 0.2346 0.0000 1.3549
State 2 0.2120 0.8879 -0.0432 0.1286 -0.3807 0.2313 -0.3285
State 3 0.0482 0.0619 0.5838 0.5533 -0.1475 0.0162 -0.6715
State 4 0.1312 0.1075 0.5006 0.0609 0.4716 0.8753 -0.0428

LT

State 1 0.0000 0.0066 -0.8700 0.1772 0.3374 0.0000 1.2188
State 2 0.0898 0.2185 -0.3802 0.0403 -0.5171 0.3200 -0.2725
State 3 0.1893 0.4002 0.2587 0.2622 -0.2798 0.1310 -0.4159
State 4 0.6057 0.8799 -0.0463 0.3453 0.2352 0.4163 0.2224

SWT – 0.0046 0.0022 0.9913 0.0222 0.5790 0.1329 -0.4138
FO = Fractional Occupancy; LT = Mean Life Time; SWT= Switching Rate; PD = Peritoneal Dialysis; HD = Hemodialysis; NC = Normal
Control. Bold indicates p < 0.05. Post-hoc pairwise comparisons (PD–HD, PD–NC, HD–NC) were performed using two-sample independent
t-tests, and Cohen’s d values indicate effect sizes.

FIGURE 5: The top 10 most significant consensus function
connections identified in the comparisons of (a) PD versus
NC and (b) HD versus NC.

motor planning, while the over-connectivity between the hip-
pocampus and amygdala may reflect dysfunctional activity
in emotion and memory circuits. The top 10 most significant
consensus connections in PD patients and HD patients are
respectively presented in Fig. III-D.

Taken together, PD patients exhibited relatively localized
disruptions characterized by abnormal interactions between
specific networks, whereas HD patients showed widespread
abnormalities involving cortico-subcortical connectivity and
large-scale disruptions in sensory and cognitive networks.
This difference may be attributed to the distinct hemody-
namic and metabolic effects of the two dialysis modalities,
further revealing divergent mechanisms of brain functional
alterations in ESRD.

E. COGNITIVE CORRELATION ANALYSIS

In addition, we examined the correlations between the dFC
metrics and the cognitive scores.

In the NC group, none of the FO, LT, or SWT indices were
significantly correlated with MMSE or MoCA (|r| < 0.2, |p|
> 0.2). In the HD group, SWT showed a significant negative
correlation with MoCA (|r| = -0.596, |p| = 0.007). In the PD
group, LT in State 2 showed a moderate positive trend with
MMSE (|r| = 0.393, |p| = 0.052).

In general, dFC metrics were more strongly related to
cognitive decline in HD, while LT characteristics were more
relevant in PD.

IV. DISCUSSION

This study compared ESRD patients undergoing differ-
ent dialysis modalities to healthy controls using dynamic
functional connectivity (DFC) analysis combined with SVM-
based classification. The results revealed significant differ-
ences in both the temporal properties and topological organi-
zation of brain networks among groups.

In the temporal properties, HD patients exhibited markedly
higher fractional occupancy and longer life time in State 1,
indicating a prolonged persistence in a single, rigid brain
network configuration. Such reduced flexibility suggests a
decreased ability of large-scale neural systems to dynami-
cally reconfigure in response to internal or external demands.
From a neurobiological perspective, the intermittent hemo-
dynamic instability, osmotic fluctuations, and recurrent toxin
accumulation associated with hemodialysis may disrupt neu-
ronal communication efficiency and impair the adaptability
of functional networks, thereby contributing to the cognitive
slowing and executive dysfunction frequently observed in
HD patients.

In contrast, PD patients demonstrated state proportions and
dwell times more comparable to those of healthy controls,
reflecting relatively preserved network stability. However,
their significantly higher switching rate suggested excessive
transitions between brain states—a possible manifestation of
compensatory hyper-flexibility. This pattern may represent
an intermediate stage of neural reorganization, in which
compensatory mechanisms attempt to preserve cognitive per-
formance despite subtle structural or metabolic alterations.
Clinically, this could correspond to mild cognitive ineffi-
ciency or attentional fluctuation in PD patients.

When further examined in the context of functional states,
HD patients showed pronounced abnormalities in states dom-
inated by the FPN and DAN, potentially explaining im-
pairments in executive control and attentional regulation. In
contrast, PD patients displayed a greater imbalance between
the DMN and other large-scale systems, which may underlie
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deficits in memory consolidation and self-referential process-
ing. These modality-specific network alterations highlight
that HD may exert a stronger disruptive effect on higher-
order cognitive systems, whereas PD may induce subtler and
partially compensatory reconfigurations.

The smaller number of abnormal connections in PD pa-
tients, primarily between the VN, SN, and DMN, indicates
a reduced but not completely lost capacity for cross-network
integration. For example, weakened coupling between visual
regions and the supramarginal gyrus may hinder attentional
reallocation, while altered SN–thalamic interactions could
impair sensory filtering and salience detection. Conversely,
HD patients exhibited nearly twice as many abnormal con-
nections, with extensive intra-network hyper-synchronization
and subcortical overconnectivity. Such pathological synchro-
nization may reflect dedifferentiation a loss of functional
specificity and could contribute to the broad cognitive and
emotional disturbances often observed in these patients.

Taken together, these findings suggest that HD patients
exhibit more rigid and less adaptive brain dynamics, whereas
PD patients display hyperactive but unstable transitions, rep-
resenting two distinct patterns of disrupted network flexi-
bility in ESRD. The modality-specific alterations observed
here provide insight into potential neural mechanisms linking
dialysis-related physiological stress to cognitive dysfunction.
These results suggest that brain network dynamics may serve
as a sensitive neuroimaging biomarker for early cognitive
impairment in ESRD.

Although our sample size was modest and cognitive as-
sessments were limited to screening scales, which may have
influenced the results, the findings remain informative. Fu-
ture longitudinal and multimodal studies with larger cohorts
are needed to confirm these observations.

V. LIMITATIONS

This study has several limitations. First, the sample size
was relatively small, especially in the subgroups of ESRD
patients under different dialysis modalities, which may re-
duce statistical power and the robustness of the findings.
Future work should validate these results in larger and multi-
center cohorts. Second, this was a cross-sectional study that
only revealed differences in brain function between dialysis
modalities, but it cannot determine causal relationships or
long-term trajectories. Longitudinal follow-up studies are
needed to address this issue. Third, the analysis was based
solely on resting-state fMRI, without integration of structural
imaging or metabolic measures, which limits the interpreta-
tion of ESRD-specific mechanisms such as uremic toxin ac-
cumulation and recurrent hemodynamic fluctuations. Fourth,
cognitive assessment was restricted to scales such as MMSE
and MoCA, which may not comprehensively capture mul-
tidimensional impairments in attention, executive function,
and memory. More systematic neuropsychological testing
should be considered in future work. Finally, although the
machine learning models demonstrated good classification

performance, external validation with larger samples and
independent datasets is required to improve their clinical
applicability.

VI. CONCLUSION

Patients with end-stage renal disease demonstrate distinct
dynamic patterns of brain network activity that differ accord-
ing to the type of dialysis treatment. Hemodialysis patients
are predominantly characterized by increased cerebral net-
work rigidity, whereas peritoneal dialysis patients exhibit a
higher frequency of state transitions. These variations may
be attributed to the differing hemodynamic and metabolic im-
pacts associated with each dialysis modality. These findings
indicate that changes in brain network dynamics could poten-
tially serve as early neuroimaging biomarkers for cognitive
decline in patients with end-stage renal disease undergoing
different forms of dialysis.
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