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ABSTRACT Some convolutional neural networks cannot extract robust structural information for image 

inpainting under complex scenes. In this paper, we propose a diffusion model with an FFT (FFT-DM) to 

generate content that matches missing region texture and semantics to inpaint damaged images. Specifically, 

FFT-DM contains two components: a Denoising Diffusion Probabilistic Model (DDPM) and a Convolutional 

Neural Network (CNN). The DDPM is used to extract global features and generate image prior and the CNN 

is employed to capture more fine-grained details and predict the parameters in the reverse process of the 

diffusion model. Additionally, a Fast Fourier Transform (FFT) is fused into a diffusion model to enhance 

perception ability to improve expressive ability for image inpainting. The mentioned techniques can improve 

performance in image inpainting. Extensive experiments demonstrate that FFT-DM outperforms current 

state-of-the-art inpainting approaches in terms of qualitative and quantitative analysis. 

INDEX TERMS Convolutional Neural Network, Diffusion model, Fast Fourier Transform, Image Inpainting. 

I. INTRODUCTION

Image inpainting, is a practical and essential issue in image

editing and image restoration. To restore the original image

with high fidelity, image inpainting employs the known

portion of the image as a prior to infer the missing region and

generate content that is consistent with the structure, texture,

and semantics of the surrounding pixel region[1]. Traditional

methods of image inpainting attempt to address this issue

through diffusion-based methods or patch-based techniques.

Diffusion-based methods propagate information from

adjacent regions to fill in the missing ones[2, 3]. However,

this method is only suitable for small-scale mask inpainting,

and it requires significant computational resources as the

missing area grows. Patch-based methods define a distance

metric between pixel patches and employ various search

strategies to find similar patches to fill in the missing areas.

Among these methods, texture-patch based[4, 5] methods

can be vulnerable to pixel discontinuity due to the

complexity and limitations of texture. Additionally, although

the structure-patch based method[6, 7] performs well in

regions with distinct boundaries, there still exhibits pixel

discontinuity in complex backgrounds. Thus, due to the lack

of high-level vision understanding, traditional inpainting

methods face challenges in generating visually realistic and 

semantically plausible patches that are consistent with the 

original image when encountering large mask areas or 

complex image semantics.  

By extracting the shallow features and deep semantic 

information from the image, deep learning-based inpainting 

methods effectively address the challenges that plague 

traditional methods. One such method applies a 

Convolutional Neural Network (CNN) to automatically 

extract deep image features, enhancing the accuracy and 

robustness of the process. Inspired by human visual 

perception connectivity, Alilou et al.[8] developed a general 

regression neural network (GRNN) for predicting missing 

regions in images by employing adjacent pixels to make 

accurate predictions. He et al.[9] established a masked 

autoencoder with an asymmetric encoder-decoder 

architecture to improve restoration in scenarios where a 

significant amount of information is missing. Nevertheless, 

CNN can learn features within localized regions but is 

limited in its ability to incorporate contextual information 

about the image at a global level. 

Another category of image inpainting integrates the 

diffusion model, which relies on partial differential 
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equations (PDEs), to generate diverse restored images. In 

2020, the Denoising Diffusion Probabilistic Model 

(DDPM)[10] gained prominence as an emerging paradigm 

of image generation. Dhariwal et al.[11] demonstrated that 

the performance of DDPM can outperform Generative 

Adversarial Network (GAN)-based methods in image 

synthesis. Moreover, the diffusion model updates the pixel 

values based on the gradients of the neighboring pixels, 

thereby achieving image smoothing while preserving the 

global structural information[12, 13]. Whilst the diffusion 

model can generate images with exceptional quality, its 

effectiveness may be limited when applied to complex 

images. This is because complex images typically contain 

intricate details and structural information that the diffusion 

model can only preserve at a global level. It is also worth 

noting that this approach also results in longer inference time 

due to the additional computations required at each iteration. 

In this paper, we present a diffusion model with a Fast 

Fourier Transform (FFT) (FFT-DM) for image inpainting. 

Specifically, FFT-DM leverages the diffusion model to 

preserve the global structural information while utilizing a 

convolutional neural network to extract a maximal amount 

of fine-grained details. To further strengthen the 

effectiveness and efficiency of this model, we incorporate 

the Fast Fourier Transform (FFT) into the diffusion model to 

extract frequency domain information from images and 

remove the high-frequency noise and artifacts. Additionally, 

comprehensive experiments have illustrated the superiority 

of our proposed FFT-DM over existing state-of-the-art 

methods, including EdgeConnect[14], DeepFill v2[15], 

RegionWise[16], Aggregated COntextual-Transformation 

GAN (AOT-GAN)[17], and Co-Modulated GAN 

(CoModGAN)[18]. 

The main merits of our FFT-DM can be delineated as 

follows. 

(1) A diffusion method is used to address image

inpainting. 

(2) FFT is exploited to be embedded into a diffusion to

extract more frequency information to improve the 

performance of image inpainting.  

The subsequent sections of this paper are organized as 

follows: Section 2 provides a literature review of the 

proposed method, including non-learning approaches to 

image inpainting, image inpainting based on deep learning, 

and diffusion model for image inpainting. The specifics of 

our proposed method are outlined in Section 3. In Section 4, 

we present a quantitative and qualitative analysis of the 

experimental results, focusing on the evaluation metrics and 

visual comparisons between the restored images and the 

originals. Finally, Section 5 offers a summary of this paper. 

II. Related Work

A. Non-learning Approaches to Image Inpainting

In the field of image inpainting, there are non-learning 

methods that estimate the content of missing regions by 

analyzing the correlation between pixels or the similarity of 

content from the edge to the center. These methods comprise 

algorithms based on sparse representation and algorithms 

based on external data search. Sparse representation 

techniques[19, 20] utilize image patches for sparse 

decomposition, with the resulting information subsequently 

used for reconstructing the image restoration through signal 

reconstruction methods. Despite the favorable outcomes in 

image inpainting, the algorithm based on sparse representation 

exhibits high computational complexity during iterative 

training with a large dictionary. In situations where it is 

unsuitable to procure a dictionary, the processed image may 

exhibit visual incoherence, such as blurring or block effect. 

Moreover, due to the restricted texture information available 

in the damaged image, inpainting techniques that rely on 

external data search can enhance the pre-existing 

knowledge[21]. Also, Hays et al.[22] employed a large dataset 

to identify comparable images to the impaired image and 

subsequently restored the missing regions. Inspired by this, we 

believe that sufficient image prior knowledge can guide the 

process of image inpainting and improve its effectiveness and 

robustness. 

B. Image inpainting based on deep learning

The emergence of deep learning-based methods and

adversarial training has enabled significant progress in image

inpainting. Compared to Non-learning algorithms, deep

inpainting models can generate reasonable content and

realistic fine-grained textures for complex scenes. Specifically,

there are two kinds of deep learning-based image inpainting

methods. The first category utilizes GAN to improve visual

effects. As an unsupervised network, GAN consists of a

generator and discriminator[23]. Specifically, the generator

generates deceptive samples to defraud the discriminator,

while the discriminator attempts to distinguish them. The two

learn through playing against each other. Pathak et. al[24]

proposed the Context Encoder (CE), which combined

autoencoder and tailored loss with a Fully Convolutional

Network (FCN) as a generator to boost the quality of inpainted

images. Since then, an increasing number of enhanced

strategies, such as contextual attention[25], partial

convolution[26], and gated convolution[15], have been

proposed. However, due to the training strategy of adversarial

learning, it is extremely challenging to train a GAN network

to its optimal state, even though GAN can produce photo-

realistic results with minimal computational overhead.

Additionally, most GAN-based methods transform

deterministically[27], making it difficult to produce

diversified results. The second category fuses CNN to fill

texture details with promising results. Shift-Net[28], based on

the U-Net[29] architecture, exhibits a high level of precision

in the restoration of missing patches, particularly regarding

fine texture and structure.  To achieve better performance,
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FIGURE 1. Overview of our FFT-DM. FFT-DM modifies the reverse process in the diffusion model in order to restore the missing region of the given 
image and leverages a U-Net with FFT to predict the posterior distribution parameter for reverse diffusion. 

Zeng et al.[30] established a Pyramid-context Encoder 

Network (PEN-NET) to extract multiscale features. 

Additionally, Cai et al.[31] reached the goal of semantic object 

removal with CNN architecture. Inspired by this, we use a 

CNN to capture the complex and fine-grained texture and 

structure information of the original images and improve the 

accuracy and fidelity of the inpainting results. 

C. Diffusion Model for Image Inpainting

Diffusion models have their roots in non-equilibrium

thermodynamics. Initially, a Markov chain comprising

diffusion steps is established, followed by a gradual

introduction of random noise to the image. This process

continues until the image is fully transformed into a state of

random noise. Subsequently, a neural network is employed to

learn the reverse diffusion mechanism and then generate

images from the noise. In contrast to GAN, diffusion models

exhibit superior training efficiency in generating samples

through the acquisition of noise. Lugmaryr et al.[27]

introduced the Repaint, which leveraged a pre-trained

unconditional DDPM model as an image generation prior and

modified the iterative process of reverse diffusion by sampling

the uncovered area, ultimately leading to high-quality

restoration results. Nichol proposed Glide[32], which

investigated the distinction between Clip and non-classifier

methods for directing conditional diffusion models. Saharia et

al. established Palette[33], which employed a multi-task

diffusion model to accomplish the image-to-image conversion,

i.e., filling, coloring, cropping, and JPEG restoration. Despite

producing images of exceptional quality, diffusion models

have prolonged inference times due to the iterative generation

employed. Motivated by this, we employ a diffusion model to

effectively capture the statistical properties of image content

and generate a prior distribution that matches the original

image characteristics.

III. Method

A. Network architecture

Inspired by Repaint[27], we propose a diffusion model with 

an FFT (FFT-DM) for image inpainting, as shown in Figure 1. 

It is notable that Repaint only employs a pre-trained 

unconditional DDPM model as the image generation model. 

Thus, we follow the training strategy proposed by the literature 

[11], then use the trained diffusion model to generate prior 

from known regions in damaged images. Subsequently, we 

leverage a U-Net[34] to predict the Gaussian distribution 

parameter for reverse diffusion. However, many CNN 

networks suffer from a limited receptive field. Motivated by 

LaMa[35], we enhance the perception ability of the U-Net by 

embedding a Fast Fourier Convolution (FFC)[36] to extract 

frequency domain information, which provides essential 

global contextual information about the input image. This 

allows the network to better understand the overall structure 

of the image and generate higher-quality results. 

B. Loss Function

DDPM describes the diffusion process as transforms from an

image 
0x  into white Gaussian noise  0,1Tx  in T time 

steps during training. In the forward direction, each stride is 

described as  

   1 1; 1 , ,t t t t t tq x x x x     (1) 

where tx denotes the sample image at timestep t while 
1tx 

indicates the previous sample. Moreover, according to a 

variance schedule, intermediate image tx  is obtained by 

adding independent and identically distributed (i.i.d.) 

Gaussian noise with variance
t , and scaling

1tx 
with a 

factor of 1 t . 

We define 1t t    and then calculate the total noise 

variance 
0

t

t ss
 


 , so Eq. (1) can be rewritten as 

    0 0; , 1 .t t t tq x x x x    (2) 

Combining Eq. (1) and (2), we can calculate the joint 

posterior  1 0,t tq x x x  by implementing Bayes theorem as 

follows. 

input output

FFT-UNet
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Based on the construction of the forward noising 

process, we assume that the distribution  1t tp x x   of the 

reverse process, as defined in Eq. (4), also follows Gaussian 

distribution that is similar in nature.  

      1 1; , , , ,t t t t tp x x x x t x t     (4)

where  ,tx t  denotes the mean value and  ,tx t
represents the diagonal covariance matrix. Both the two 

parameters are always predicted by a neural network. 

Besides, this neural network could also predict the noise   

added to the image 
0x , which can be predicted via

0

1

1

t
t

t t

x x



 

 
  

  

(5) 

Ho et al.[10] proposed a simplified training objective 

with Mean-Squared Error (MSE) loss as follows: 

 
0

2

, , ,simple t x tL E x t    
  

(6) 

Furthermore, this objective can be seen as a reweighted 

form of variational lower bound (VLB)[34] 
vlbL as shown in 

the following equations. 

0 1 1 ,vlb T TL L L L L     (7) 

 0 0 1log ,L p x x   (8) 

    1 1 0 1, ,t KL t t t tL D q x x x p x x   (9) 

    0 ,T KL T TL D q x x p x (10) 

where  KLD  expresses the Kullback–Leibler divergence. 

We choose the hybrid objective[34] for training both 

 ,tx t and  ,tx t . Thus, the loss function of FFT-DM

can be represented as: 

,simple vlbL L L     (11) 

where   is a constant used to prevent 
vlbL  from 

overwhelming simpleL , and 0.001  . 

Subsequently, we interpolate the output   of this neural 

network to obtain the variance  ,tx t  as shown in Eq. 

(12). 

    , exp log 1 logt t tx t       (12)

Additionally, the mean value  ,tx t could be 

predicted through the following Eq. (13). 

   
1 1

, ,
1

t
t t t

t t

x t x x t 


 

 

 
  

  

  (13) 

C. Diffusion model

As we know, the forward process could be defined by a 

Markov Chain of adding Gaussian noise. This allows us to 

sample the known region known

tx  of tx through Eq. (2) and the 

unknown region unknown

tx  of tx using Eq. (4) at any point in 

time. Thus, we obtain the ensuing equation for one reverse 

step, 

  0 , 1 ,known

t t tx x   (14) 

    , , , .unknown

t t tx x t x t   (15) 

For the ground truth image x , we assume that mask x

indicates the unknown pixels while  1 mask x denotes

the known pixels. Repaint[27] leverages Gaussian sampling 

on the known region to generate the image known

tx , which is 

then combined with the currently generated unknown region 
unknown

tx  to obtain the input tx of the reverse process at the

timestep t . This technique enables us to incorporate the 

known regions and other generative priors in a manner that 

enhances the overall quality and consistency of generated 

images. That is, the generated images that are not only 

visually appealing but also coherent and consistent with the 

underlying context and structure of the input image. This 

process could be illustrated by Eq. (16). Furthermore, FFT-

DM also incorporates the resampling strategy of Repaint[27] 

to harmonize the generated regions with the known region in 

the aspect of semantics and boundaries. 

 1known unknown

t t tx mask x mask x   (16) 

D. FFT-UNet

As mentioned before, a neural network is used to model the

Gaussian distribution  1t tp x x   to predict its parameters 

 ,tx t  and  ,tx t , then performs Gaussian sampling on 

the intermediate image tx  to obtain the output 1tx   of the 

reverse process at the timestep t . Additionally, in image 

inpainting tasks, the generation prior to the model is derived

from the damaged input images. To accurately extract 

relevant image features from these inputs, we employ U-

Net[34] with strong representation capabilities that can 

capture local changes and texture variations in images. It is 

notable that Isola et al.[37] constructed their generator based 

on a U-Net architecture, which has been shown to effectively 

capture contextual information and possess a power

generation ability. Besides, Suvorov et al.[35] proved that 

incorporating the FFT mechanism within the CNN

framework can increase the global receptive field and

improve generalization in the task of image inpainting.

Motivated by this, we select an improved U-Net, FFT-UNet, 

as a predictor in the reverse process. The structure of FFT-

UNet is depicted in Figure 2. 

Specifically, the input of FFT-UNet is a colored noisy 

image 
nI with 3 channels. The first layer is a convolution 

layer with a kernel size of 3 3  and 64 output channels, 

which converts image information into feature space. Then, 

the second and third layers apply a resblock with time  
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FIGURE 2. The architecture of the proposed FFT-UNet, which utilizes FFC to capture essential global contextual information of the input image. 

embedding, which can not only enhance its representation 

ability to capture long-distance dependencies in sequence 

data, but also improve its overall performance and robustness. 

The output of the 1st, 2nd, and 3rd layer 
1stO , 

2ndO , 
3rdO can 

be presented as the following equations, respectively. 

 1 ,st nO C I  (17) 

 2 1 ,nd time stO Rs O  (18) 

 3 2 ,rd time ndO Rs O  (19) 

where C  expresses a convolutional operation and 
timeRs

denotes the resblock with time embedding. 

Subsequently, we implement a 3-layer of combination 

residual layers and average pooling for downsampling, 

followed by a 3-layer of combination residual layers with 

nearest neighbor interpolation for upsampling, which 

connect layers with the same spatial size by skip connections. 

We describe the 6th layer and 8th layer concretely. That is, 

the third downsample block and the first upsample block, 

which are symmetrical in position. The input of the 6th layer 

can be represented as 

 6 32 ,th rdI Downsample O (20) 

where Downsample  denotes a series of resblock for 

downsampling, resblock with time embedding, attention 

block, resblock with time embedding, and attention block.  

Then the output of the resblock for downsampling 

res downO 
and the output of the first attention block 

1attenO  are 

defined as the following equations. 

 6 ,res down down thO Rs I  (21) 

   1 6 ,atten time down thO Atten Rs Rs I (22) 

where 
downRs  and Atten  represents the resblock for 

downsampling and Legacy QKVAttention[11], respectively. 

Thus, the output of the 6th layer 
6thO  is expressed as 

 

      
6 3

6

3

3 .

th rd

time time down th

O Downsample O

Atten Rs Atten Rs Rs I




(23) 

Next, we should introduce the neck part of FFT-UNet, 

which consists of two branches and a convolutional 

operation. The output of the upper branch upperO  is expressed 

as 

   6 .upper time time thO Rs Atten Rs O (24) 

The output of the lower branch, which comprises a 3-

group combination of FFC and attention block, is defined as 

Eq. (25). This design has been optimized to achieve three key 

objectives: extracting global contextual information, 

enhancing the network's perception ability, and improving 

the efficiency of the training process. 

      6 ,lower thO Atten FFC Atten FFC Atten FFC O

(25) 

where FFC  indicates a fast Fourier convolution operation, 

whose structure is shown in Figure 2. Followed by a 

convolutional operation with the size of 1 1 , the output of 

the neck, i.e. the 7th layer, is shown as 

 7 , ,th upper lowerO Conv O O      (26) 

where    ,   denotes the concatenate operation. 

For FFC[35], it first splits the input with c  channels into 

two parts with 
2

c  channels to not only extract two diverse 

features, i.e., local features and global features, but also 

enlarge the receptive field. The first part is followed by two 

paralleled convolutional operations, add operation, 

batchnormalization (BN), and Rectified Linear Unit (ReLU), 

where BN normalizes data to accelerate network speed and 

ReLU transforms linear features into non‐linear features. 

Meanwhile, the process of the second part differs from the 

first in that it follows a parallel combination of a 

convolutional operation and a spectral transform. The 

outputs of these two processed parts are then concatenated to 

form a new feature map that contains frequent domain 

information. Specifically, the spectral transform is structured 

by three convolutional operations, two combinations of BN 

and ReLU BR , an FFT operation FFT , an inverse FFT 
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operation rFFT , and an add operation  , as defined in Eq. 

(27). 

  

    

7

7

2
,

2

th

ST

th

cBR C O

O C
crFFT BR C FFT BR C O

 
 
 

       
   

(27) 

where 
72 th

c O  expresses the half channel of the neck input 

and 
STO denotes the output of spectral transform.

Thus, the output of FFC can be denoted as 

 

       
7

7 7 7, .
2 2 2

FFC th

th th th ST

O FFC O

c c cC O C O C O O



   
  

(28) 

Subsequently, we introduce the structure of the first 7-

layer upsample block Upsample , which consists of three 

resblocks with time embedding, three attention blocks, and a 

resblock for upsampling. The output of this upsample block, 

i.e., the 8th layer, 
8thO  is defined as the following equation. 

 8 7

7 6 1

( ([ ( [

( [ ( ), ]), ]), ]))

th th

up time

time time th th atten res down

O Upsample O

Rs Atten Rs Atten

Rs Atten Rs O O O O 





，

(29) 

where upRs expresses the resblock for upsampling.

Assume that the output of the third similar structured 

upsample block, that is, the 10th layer, is 
10thO . Then we

exploit a stack of three resblocks with time embedding, 

which is connected with the 1st, 2nd, and 3rd by skip 

connection, to refine the extracted features. Subsequently, a 

combination of groupnormalization (GN) and SiLU is 

applied. Concretely, GN reduces the dependence of model 

performance on batch size and improves the training stability 

while SiLU enhances the nonlinear fitting ability and 

training speed. Then, a single convolutional layer transforms 

the obtained feature map into predicted parameters and then 

constructs 
1tx 

. Thus, the output of FFT-Unet 
FFT UNetO 

with

6 channels is formulated as follows: 

    10 3 2 1, , , ,

FFT UNet

time time time th rd nd st

O

C GSi Rs Rs Rs O O O O

 

          

(30) 

where GSi  denotes the combination of GN and SiLU. 

IV. Experimental Analysis and Results

A. Datasets

The CelebA-HQ dataset[38] is a large-scale collection of high-

resolution face images, consisting of 30,000 samples. The

dataset encompasses a wide range of pose variations,

including tilts and rotations, as well as diverse background

clutter, such as indoor and outdoor scenes. As a result, the

dataset has been widely used for various computer vision tasks,

including face attribute recognition[39], face detection[40],

facial part localization[41], and face editing & synthesis[42]. 

In this work, we validate the performance of the proposed 

FFT-DM on the publicly available CelebA-HQ dataset at 

different resolutions, and we choose the image size of 64 64  

and 256 256  for our experiments. 

B. Implementation details

All experiments were conducted using Python 3.8.5 and

PyTorch 1.13 on Ubuntu 20.04. The experimental setup

consisted of a computer with an Intel Xeon Gold 6330 CPU

@ 2.00 GHz, 128GB of RAM, and an NVIDIA GeForce RTX

3090 GPU. The running speed of the GPU was accelerated

utilizing NVIDIA CUDA 11.7 and cuDNN 8.5.0. Also, FFT-

DM employed a timestep of 250T   and resampled the data 

10r   times with a jumpy size of 10j   , which is in line with 

the approach taken in Repaint[27]. Additionally, we selected 

two commonly used metrics, Frechet Inception Distance Score 

(FID)[43] and Learned Perceptual Image Patch Similarity 

(LPIPS)[44], to evaluate the quality of the inpainted images in 

terms of semantic fidelity, texture consistency, and structural 

coherence. Lower FID and LPIPS scores indicate a higher 

degree of similarity between the restored image and the 

original image. 

C. Network analysis

In this section, we verify the rationality and validity of the

proposed FFT-DM, which is composed of a diffusion model

and FFT-UNet.

Diffusion model: As we know, CNN is constrained by its

localized inductive bias, which makes it difficult to capture

long-distance information and comprehend global image

semantics. In contrast, the diffusion model is a probabilistic

model that can learn the data distribution of real image data,

thereby preserving global details and structural information.

Motivated by this, we combine U-Net and the diffusion model

to generate realistic images. The diffusion model is utilized to

model image data distribution and facilitate the generation of

realistic images, while U-Net is leveraged to extract image

features and predict the Gaussian distribution parameter for

reverse diffusion. Table 1 demonstrates the effectiveness of

the aforementioned combination, showing that 'U-Net with

diffusion model' outperforms 'U-Net' not only at the mask ratio 

of 20%-40% but also at the mask ratio of 40%-60% in terms 

of generating more intricate pixel details in the inpainted 

images.  

FFT: It is known to us the fast Fourier transform converts 

spatial domain information in images into the frequency 

domain space, thus enhancing the feature representation 

ability of CNN. Additionally, the FFT mechanism speeds up 

the computational speed of convolution operations, improving 

the efficiency of CNN. Inspired by this, we introduce the 

integration of FFT into the U-Net architecture to enhance the 

performance and efficiency of image inpainting tasks. The 

effectiveness of FFT is demonstrated in Table 2, where ‘FFT-

DM’ exhibits a lower FID score than ‘U-Net with diffusion 

model’, not only for an image size of 64 64  or 256 256 , but 
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also for train steps of 45 10  or 51 10 . Notably, the diffusion 

model that directly handles high-resolution images is 

characterized by a significant level of computational 

complexity, prolonged inference duration, and substantial 

time and computing resources required. To address this issue, 

we first concentrate on the dataset with a resolution of 64 64 , 

and subsequently expanded the investigation to include the 

dataset with a resolution of 256 256  after examining an 

appropriate framework. 

TABLE 1. RESULTS OF DIFFERENT METHODS FOR RANDOM MASK RATIOS WITH 1,000 IMAGE SAMPLES. 

Mask Ratio 20%-40% 40%-60% 

Model FID↓ LPIPS↓ FID↓ LPIPS↓ 

U-Net 17.98 0.0936 28.58 0.150 

U-Net with diffusion model 14.47 0.0502 15.68 0.083 

TABLE 2 IMAGE SYNTHESIS RESULTS FOR DIFFERENT METHODS WITH DIFFERENT IMG_SIZES AND TRAIN_STEPS, USING 1,000 IMAGE SAMPLES. 

Model Img_size Channels Train_steps  410 FID↓ 

U-Net with diffusion model
64 64 5 

84.50 

FFT-DM (Ours) 62.00 

U-Net with diffusion model
64 64 10 

80.67 

FFT-DM (Ours) 59.33 

U-Net with diffusion model
256 64 5 

89.40 

FFT-DM (Ours) 47.86 

TABLE 3. MULTI-SCALE COMPARISON RESULTS OF SEVERAL NETWORKS WITH 3,000 IMAGE SAMPLES.  

Method 
#Params

 610

Narrow masks Wide masks 

FID↓ LPIPS↓ FID↓ LPIPS↓ 

EdgeConnect[14] 22 9.61 0.099 9.02 0.120 

DeepFill v2[15] 4 12.5 0.130 11.2 0.126 

RegionWise[16] 47 11.1 0.124 8.54 0.121 

AOT-GAN[17] 15 6.67 0.081 10.3 0.118 

CoModGAN[18] 109 16.8 0.079 24.4 0.102 

LaMa[35] 27 7.26 0.085 6.96 0.098 

FFT-DM (Ours) 37.5 4.06 0.036 7.25 0.121 

D. Comparisons with the state‐of‐the‐art inpainting

methods

To evaluate the performance of FFT-DM, we conducted a

comprehensive set of quantitative and qualitative tests on

CelebA-HQ[38] with 3,000 images. Several state-of-the-art

inpainting methods, including EdgeConnect[14], DeepFill v2,

RegionWise[16], AOT-GAN[17], CoModGAN[18], and

LaMa[35], were compared to FFT-DM. Quantitative results

are demonstrated in Table 3. For narrow masks, FFT-DM

outperforms all other methods in FID and LPIPS. For wide

masks, although LaMa[35], the best GAN method, exhibits

better global consistency, FFT-DM still achieved competitive

performance in FID. Furthermore, we used parameter counts

to verify their efficiency. Generally, a larger number of

parameters indicates that the model is more expressive and fits

the training data more accurately. Nevertheless, larger models

typically require more computing resources and a longer

training period. The parameter counts of FFT-DM rank in the

middle of Table 3, elaborating a trade-off between model

complexity and computational capacity.

To vividly illustrate the effectiveness of FFT-DM, we 

provide visual results in Figures 3 and 4. For each image in 

Figure 3, the first column shows the original image, the second 

column displays the image with different masks applied, and 

the third column presents the restored image. The results 

demonstrate that FFT-DM can handle masks with arbitrary 

shapes and sizes, and can perform well even for masks with 

large dimensions. Moreover, Figure 4 shows that FFT-DM 

can generate diverse filling area content consistent with the 

texture and semantics of the surrounding region. 

V. Conclusion

In this paper, we propose a novel approach called FFT-DM for

image inpainting, which generates content that is consistent

with the surrounding area not only in texture but also in

semantics. FFT-DM uses a diffusion model to increase the

degree of freedom of masks and generate image prior that

matches the semantic and texture characteristics of the original

image. Then, FFT-DM leverages CNN architecture to capture

more texture features and detailed information in the reverse

process of the DDPM. Besides, we fused the FFT mechanism

into the diffusion model to mine frequent features and boost

perception ability. Extensive experiments demonstrate that

FFT-DM can not only generate inpainted images with high

visual quality but also balance a trade-off between

effectiveness and efficiency. Next, we attempt to extend FFT-
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DM to handle multiple low-level vision tasks, such as image 

denoising and deblurring, in the future. 

FIGURE 3. Visual results for different mask ratios on CelebA-HQ[38]. 

FIGURE 4. Visual results for diverse generated images. 
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