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ABSTRACT Effective differentiation of aircraft types using images is important for providing military 

combat information as well as civilian aircraft operations. Aircraft image recognition has many difficulties 

such as large variations of target scale, complex backgrounds, and difficult data set acquisition, which lead 

to the low recognition accuracy of existing models. To address the problem of low recognition accuracy 

caused by the above difficulties. This paper proposes the improved YOLOv5 model for the recognition of 

aircraft images. First, this paper designs the CSPResNet50dCA network as the backbone of the YOLOv5 

model to enhance the feature extraction capability for small target aircraft in images. By introducing the 

coordinate attention mechanism and the CSP structure, the feature-focusing capability and the computing 

speed of the model are enhanced. Afterward, we use data enhancement to expand the data set and transfer 

learning to improve the generalization ability and convergence speed of the model, so as to improve its 

robustness. The experimental results show that the improved YOLOv5 model has significantly improved the 

recognition accuracy of aircraft targets， and significantly enhanced feature extraction ability for small target 

aircraft with good generalization ability. 

INDEX TERMS aircraft recognition, yolov5, attention mechanism, target detection, CSPResNet50dCA 

I. INTRODUCTION

In terms of the civil field, recognition and classification of

aircraft targets in images can help airlines supervise and

dispatch airport flights and find lost aircraft targets. In terms

of the military field, the current stage of warfare has changed

from the past mechanized warfare to information-based

warfare, and aircraft targets, as fast and flexible airspace

combat forces, have important military functions such as

reconnaissance, transportation, and combat, and their dynamic

can provide important military information. Therefore, the

recognition of aircraft targets is not only beneficial to the

development of civil aerospace enterprises but also has vital

significance to the situation estimation of the military

battlefield and the making of military decisions. Due to the

interference of weather (fog, dust), noise, light intensity

(exposure), pollution, and other factors, the internal structure

and texture information of aircraft images will be affected,

thus affecting the accuracy and efficiency of target detection,

bringing great difficulty to the image target detection [1].

Among image detection with complex backgrounds, high

target density, and different aircraft types, the detection

accuracy is low, and it is easy to produce missed and false

detection. Due to the disadvantages of extensive model

parameters and large computation, it is difficult to meet the

requirements of real-time detection when a trained model is

used to solve the actual problem. Therefore, researchers hope

that the accuracy and speed can be further improved when 

target detection is performed on aircraft images. 

Currently, there are two mainstream target detection 

methods, one-stage and two-stage detection methods [2]. The 

typical algorithm of the two-stage method is Faster R-CNN. 

Sha [3] et al. proposed a remote sensing image aircraft target 

detection method based on improved Faster R-CNN, which 

improves the localization accuracy of multi-scale aircraft 

targets in remote sensing images by modifying the scale of 

candidate regions in RPN with the help of multi-level fusion 

structure and multi-scale RPN (Region Proposal Network) 

mechanism; Zhu [4] et al. proposed an improved ROI-pooling 

scheme based on bilinear interpolation for aircraft target 

detection based on the Faster R-CNN algorithm, which solved 

the region mismatch problem caused by twice quantization. 

The two-stage method has some advantages in accuracy 

performance, but it cannot achieve directional detection for 

aircraft targets with variable directions and is too slow in 

detection speed to meet the demand of real-time detection. 

There are also many scholars devoted to the study of one-stage 

detection algorithms. Wang [5] et al. proposed an algorithm 

for aircraft remote sensing image target detection based on 

SSD, using a modified deep residual network to replace the 

skeleton network of SSD, and designing a new feature 

pyramid network containing a feature perceptual field 

enhancement module and attention mechanism module, which 

makes both deep and shallow networks get structured level-
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rich fusion features. The SSD algorithm and its improved 

improvement algorithm have achieved good results, but with 

the proposed YOLO series algorithm, many scholars gradually 

shift their research focus to the YOLO series algorithm, 

because this method is very fast in detection and can meet the 

real-time requirements. Shi [6] et al. proposed to apply the 

YOLOv4 algorithm to the detection of aircraft targets in 

remote sensing images and achieved good results. Zhang [7] 

et al. proposed a remote sensing aircraft target detection model 

based on improved YOLOv4, using the K-means++ algorithm 

to optimize the anchoring frame for the target samples, and 

fusing convolutional kernel pruning and interlayer pruning to 

sparsely train the convolutional kernel and batch normalized 

BN layer to simplify the network structure and reduce the 

number of parameters. Based on the results of various studies, 

the YOLOv5 algorithm in the YOLO series has better 

comprehensive detection ability than other YOLO models due 

to its accuracy and detection accuracy [8-10]. 

To address the problems of complex background of 

aircraft images, difficult extraction of aircraft semantic 

information and image features due to the presence of 

occlusions, and inaccurate localization of small target aircraft, 

this study proposes an improved YOLOv5 model for the 

detection of aircraft images. First, a CSPResNet50d network 

is designed to extract the aircraft features in the image; then a 

CA module with a coordinate attention mechanism is added to 

the network, which is used to improve the network's ability to 

focus on small target aircraft, ignore useless information and 

focus on information useful for the detection task, thus 

reducing the missed detection rate. Then the designed 

CSPResNet50dCA network is used to replace the backbone of 

the original YOLOv5 model. Finally, data enhancement 

methods and transfer learning strategies are used to expand the 

data set, improve the convergence speed and generalization 

ability of the model, and train the best YOLOv5-

CSPResNet50dCA model. Through these improvements, the 

final model proposed in this paper significantly improves the 

accuracy and computing speed of aircraft detection.  
II. MATERIALS AND METHODS
A. DATA ACQUISITION

There are two datasets applied in this paper, Dataset 1 is a

classification dataset of aircraft images, which is to test the

extraction ability of the CSPResNet50CA network proposed

in this paper for aircraft features. Dataset 2 is the target

detection dataset of aircraft images, which is used to verify the

performance of the Yolov5-CSPResNet50dCA model

proposed in this paper.

1) Dataset 1

The images and tags used in Dataset 1 are mainly collected 

from the FGVC-Aircraft dataset, while the aircraft images of 

some categories are crawled from the web by the Python 

crawler according to the aircraft model tags, and the aircraft 

data with corresponding tags are added. The whole dataset 

contains 10,000 aircraft images, including 70 classes of 

"series" (such as A330, Boeing 737, C-130, etc.). The number 

of differently labeled data was appropriately balanced, and 

6667 images were randomly selected to form the training set, 

while the remaining 3333 images were used as the test set. 

Some of the image data are shown in Fig. 1. 

Fig. 1. Schematic diagram of some data sets 

2) Dataset 2

The main body used for Dataset 2 is the Military Aircraft 

dataset. This dataset is used by the U.S. side for military 

aircraft recognition and contains 34 types of aircraft such as 

A10, B1, B2, B52 Be200, C130, C17, C5, E2, and EF2000. 

However, this dataset has insufficient data for some types, for 

example, it is difficult to obtain pictures of XB70-type 

bombers on the real battlefield due to their scarce number and 

few military operations conducted. To solve this problem, this 

paper obtained images of various types of aircraft using 

Python crawlers and populated the data for the types of aircraft 

with insufficient data to make the overall data set evenly 

distributed. The final composition of the dataset used in this 

task contains 5003 training images and 1235 test images. 

B. DATA LABELING

LabelImg software was used for the labeling process, and the

labeled files were all in XML format. When applied to the

YOLO algorithm, the labeled files only need to perform

format conversion.  Part of the labeling is shown in Fig. 2.

Fig. 2. Schematic diagram of image annotation 

C. DATA ENHANCEMENT

A large dataset is required to train the deep learning network.

To improve the confidence of this experimental model, data

augmentation of the training set is required to improve the

learning effect and generalization performance of the network.

This paper uses HSV, rotation, displacement, scaling,
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cropping, flipping, Mix-up, and Mosaic to extend the dataset, 

each using random probability to determine whether the 

images need to be extended. The Mix-up is a simple linear 

transformation of the input image data that allows the images 

to mix between different categories. Mosaic data enhancement 

can improve the overall quality of the data set. Four images 

can be cropped at random, and the length, width, and position 

of the cut can be changed at random. Then they are stitched 

into one image as training data, and the target frame is adjusted 

accordingly, it enriches the background of the detected objects 

and facilitates the detection of small targets. in the case of 

extracting 4 images, each image is reduced to a different 

degree and the original target size is closer to the size of the 

small target. The effect of Mosaic enhancement is shown in 

Fig. 3. 

Fig. 3. Mosaic data enhancement 

By using image enhancement to make up for the 

insufficient training samples and solve the problem of 

insignificant differences in image features, the training speed, 

generalization ability and robustness of the model are thus 

improved. 

D. METHODOLOGY

1) YOLOv5 model

YOLOv5[11] is a very popular target detection framework, 

and its overall structure is shown in Figure 1. The network 

structure of YOLOv5 is relatively simple, and it can be 

roughly divided into three parts: the Backbone network for 

feature extraction, the Neck network for feature fusion, and the 

Head network for target class and location regression 

detection. 

The input side part of YOLOv5 adaptively scales the 

image by automatically setting the size of the initial anchor 

frame and performs batch normalization of the input image 

size. Also, image data can be pre-processed. K-means [12] 

clustering of anchor frame sizes of labeled samples are used to 

determine the most appropriate anchor frame size at each 

training. 

The backbone network of YOLOv5 is composed of Conv 

modules, CBS modules, and an SPP structure. A CBS module 

mainly performs convolutional operations to extract feature 

information from the images. The spatial pyramid pooling 

layer (SPP) module is introduced in the backbone network to 

solve the problem of the non-uniform size of input images. 

The neck of YOLOv5 is mainly composed of a bottom-

up Feature Pyramid Network (FPN) and a top-down Path 

Aggregation Network (PAN) structure. The multi-scale 

feature fusion of aircraft images by FPN and PAN enables the 

feature map to contain semantic and feature information of 

aircraft, ensuring accurate recognition of aircraft targets of 

different sizes. 
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Fig. 4. Structure diagram of the original yolov5 model 

2) CA attention mechanism

It has been shown that the channel attention mechanism can 

significantly improve the performance of image recognition 

networks, but the use of the channel attention mechanism can 

easily lead to the problem of ignoring the spatial location 

information in the high-level feature maps. The popular 

attention mechanisms include SE (Squeeze and 

Excitation)[13], and CBAM (Convolutional Block Attention 

Module)[14]. Among them, SE only considers remeasuring 

the importance of each channel by modeling channel 

relationships, while ignoring the location information and 

spatial structure, which are essential for generating spatially 

selective attention maps. CBAM encodes global spatial 

information by global pooling on channels, which compresses 

global spatial information into a single channel descriptor, and 

thus makes it difficult to preserve the spatial location 

information of objects in channels. It is therefore difficult to 

preserve the spatial location information of objects in the 

channel. 

The CA module, on the other hand, considers not only the 

relationship between channels but also the location 

information in the feature space. Its essence is to encode 

channel relationships and long-term dependencies by precise 
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location information. CA decomposes attention into X-

direction and Y-direction and uses one-dimensional feature 

encoding to obtain long-range point-space location 

relationships while obtaining more precise location 

information. Then the direction-sensitive and location-

sensitive feature maps are formed by feature encoding, which 

enhances the representation of the target of interest by features 

with location information. As shown in Fig. 5, the specific 

operation can be divided into two steps: coordinate 

information embedding and coordinate attention generation. 

Fig. 5. Diagram of coordinate attention module 

(1) Coordinate information embedding

The encoding of the spatial location of aircraft images by

channel attention is usually global pooling, and low-level 

features with rich spatial location information are pooled to 

obtain high-level semantic features, but high-level features are 

difficult to retain global spatial location information. Thus two 

one-dimensional feature encodings are used to decompose the 

global pooling to enable greater interaction between the 

locations of distant points as much as possible. 

If the height of the feature map is H, then its c-th channel 

in the vertical direction after pooling is characterized as in (1). 

𝑧𝑐
ℎ(ℎ) =

1

𝑊
∑  0<𝑖<𝑊 𝑥𝑐(ℎ, 𝑖) (1) 

Similarly, if the width of the feature map is W, the output 

of its c-th channel in the horizontal direction can be written as 

(2). 

𝑧𝑐
𝜔(𝜔) =

1

𝐻
∑  0<𝑗<𝐻 𝑥𝑐(𝑗, 𝜔) (2) 

The above 2 pooling methods operate in different 

directions of the same dimensional features, and their resulting 

aggregated features have some perceptibility of all values in 

both directions of the feature map. These two transformations 

ensure that the attention module captures the long-term 

dependencies of the features along one spatial direction and 

preserves the precise location information of the features along 

the other spatial direction, which helps the network to locate 

the information of interest more accurately. 

(2) Coordinate attention generation

The feature map is decomposed and pooled from two

dimensions according to the method in section (1) so that the 

pooled features have a larger perceptual field to make full use 

of the information near the foreground target of the aircraft 

image. It enables the distant points on the same dimensional 

features to retain the mutual relationship under the special 

pooling. To incorporate the transformed features into the 

neural network, the final features with weights need to be 

generated. Coordinate attention generation should follow the 

following design principles. 

1. Firstly, to improve the efficiency of the overall network

model, the complexity of the feature conversion should not be 

too high and the conversion should be as simple as possible. 

2. Secondly, the conversion should retain and utilize the

location information in the feature map as much as possible, 

which can better grasp the overall spatial location information 

of the image and establish the connection between distant 

feature points on the aircraft image to capture the region of 

interest. 

3. Finally, the whole process can effectively bring out the

key channel information features of the aircraft image and 

capture the relationship between channels as effectively as 

possible. 

After information embedding, the information generation 

process mainly includes information fusion and convolutional 

transformation. Information fusion mainly stitches together all 

the information of different regional features, and then 

convolution, batch normalization, nonlinear activation, and 

other operations, as shown in (3). 

𝑓 = 𝛿(𝐹1([𝑧
ℎ , 𝑧𝜔])) (3) 

Where [𝑧ℎ , 𝑧𝜔] is the stitching and fusion of two feature

maps of different orientations along the spatial dimension, 𝐹1
is the convolution operation, 𝛿 is the nonlinear activation 

function, and 𝑓 ∈ 𝑅
𝐶

𝑟
×(𝐻+𝑊)

 is the intermediate feature map 

where spatial information is encoded in horizontal and vertical 

directions, where 𝑟  is the reduction rate of the regulatory 

dimension, and to reduce the dimensionality of the feature 

vector and improve the efficiency of network training, an 

appropriate ratio 𝑟 is chosen to reduce the number of channels. 

The intermediate feature maps 𝑓 along the x and y directions 

are decomposed into 𝑓ℎ and 𝑓𝑤, which correspond to the two

dimensions of the horizontal and vertical directions of the 

feature map, respectively. The convolutional transform and 

nonlinear activation are performed on the two tensors, as 

shown in (4) and (5), respectively: 

𝒈ℎ = 𝜎(𝐹ℎ(𝒇
ℎ)) (4) 
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𝒈𝑤 = 𝜎(𝐹𝑤(𝒇
𝑤)) (5) 

Of which 𝐹ℎ  and 𝐹𝑤  are the 1*1 convolutional change

operations, 𝜎  is the Sigmoid activation function, and the 

outputs 𝒈ℎ and  𝒈𝑤 are the attention weights of the horizontal

and vertical directions of the input X, respectively. 

Ultimately, the output of the feature 𝑥𝑐(𝑖, 𝑗) , which

denotes the height and width on the c-th channel of input X is 

𝑖  and 𝑗 , after the coordinate attention module, can be 

expressed as (6). 

𝑦𝑐(𝑖, 𝑗) = 𝑥𝑐(𝑖, 𝑗) × 𝑔𝑐
ℎ(𝑖) × 𝑔𝑐

𝑤(𝑗) (6) 

3) CSPResNet50dCA feature extraction network

In general, deepening the network can enhance the learning

ability of the model and better extract the sample features.

However, increasing the depth of the network will increase the

training difficulty, and the gradient explosion or gradient

disappearance will occur easily during the training process,

and the increase of parameters will often make the network

tend to overfit. Therefore, too-deep networks tend to degrade

in accuracy rather than increase. The main structure of ResNet

is the residual module, which contains two main parts, residual

learning, and an identity mapping channel. The residual

structure is shown in Fig. 6.

Fig. 6. Schematic diagram of the residual structure 

ResNet still performs well after the layer deepening 

because the gradient is preserved by the identity mapping 

channel. According to the stacking of a different number of 

residual blocks, there are five ResNet structures with different 

depths, which are 18, 34, 50, 101, and 152. The ResNet50 

structure is used in this paper. 

ResNet50d is a ResNet-D network with 50 convolutional 

layers [15].  ResNet-D moves the down-sampling of the 

original ResNet residual branch to the 3×3 convolution at the 

back to avoid a large amount of information loss. At the same 

time, it leaves the down-sampling of the identity mapping part 

to the average pool to avoid the information loss caused by 

1×1 convolution and down-sampling at the same time. The 

specific module structure of block1 and block2 of ResNet-D 

is shown in Fig. 7. 

(a)block1   (b)bolck2 

Fig. 7. Two blocks of ResNet-D 

The overall structure of ResNet50d is shown in Table 1. 

The input image first goes through three 3×3 convolutions and 

one maximum pooling to change the image size to 1/4 of the 

original size, and then goes through stage1, stage2, stage3, and 

stage4 in turn, to further extract features. Each stage is 

composed of 1 block1 and k block2. 

TABLE I. NETWORK STRUCTURE OF THE RESNET50 MODEL 

Layer Num 
Kernel 

size 

Stride Output 

size 

Channels 

Input 640*640 3 

3*Conv 
1*Conv1 3*3 2 320*320 32 

2*Conv2 3*3 1 320*320 64 

Max 
Pool 

1 
2 160*160 64 

Stage1 
1*block1 1 160*160 64 

2*block2 1 160*160 

Stage2 
1*block1 2 80*80 128 

3*block2 1 80*80 

Stage3 
1*block1 2 40*40 256 

5*block2 1 40*40 

Stage4 
1*block1 2 20*20 512 

2*block2 1 20*20 

To further improve the learning capability of the 

ResNet50d network and remove the computational bottleneck, 

this paper nests the CSPNet[16] structure in the ResNet50d 

network, which is shown in Fig. 8 and can reduce the use of 

video memory and accelerate the inference speed of the 

network. 
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Fig. 8. Structure of CSPNet 

In this paper, CSPNet is nested in stage 1, stage 2, stage 

3, and stage 4 to effectively enhance the learning ability of the 

convolutional neural network and improve the accuracy of the 

model. The feature extraction network CSPResNet50d of this 

paper is designed through the CSP structure, as shown in Fig. 

9. 

Fig. 9. Structure of CSPResNet50d 

M is the number of block repeats and C is the number of 

channels.  

The difficulty of small target detection lies in the 

relatively small number of available features for small targets, 

the high requirement for target localization accuracy, the lack 

of accurate position information, and the incomplete 

representation of features, so the coordinate attention 

mechanism CA module is introduced in the CSPResNet50d 

network. 

The CSPResNet50dCA feature extraction network is 

designed by these tricks to achieve adequate extraction of 

small target features, and its overall structure is shown in Fig. 

10. 

Fig. 10. The Overall structure of CSPResNet50dCA 

4) Improved Algorithm of YOLOv5-CSPResNet50dCA

Realistic aircraft backgrounds are complex and there are

often many occlusions. Different angles and attitudes

lead to obvious disparities in the images of the same type

of aircraft and the size of aircraft in different images varies

greatly. In addition to that, there are many small target

aircraft. These factors make it difficult to locate and identify

the aircraft. To achieve accurate recognition of aircraft

targets, this paper uses CSPResNet50d to replace the

YOLOv5 backbone network CSPDarkNet53 and adds an

attention mechanism to the CSPResNet50d network to

form the CSPResNet50dCA network. The improved

YOLOv5-CSPResNet50dCA algorithm can detect and

identify small target aircraft more accurately.

Since the existing aircraft image datasets are limited, 

a good model cannot be trained with these small datasets 

alone, so this paper applies a transfer learning strategy to 

train the model [17-18]. Firstly, we construct a new 

transfer learning model using the deep learning model pre-

trained on the large-scale ImageNet21k image dataset. 

Then, we set reasonable model hyperparameters, and use 

the weighted sum of training loss, validation loss and 

distance between the training set and validation set as 

training cost. Finally, we determine the best transfer 

learning model by layer-by-layer training and 

validation. The overall structure of the algorithm is shown in 

Fig. 11. 
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Fig. 11. The Overall structure of The Improved YOLOv5 model 

III. RESULTS

A. TRAINING ENVIRONMENT AND EVALUATION
INDICATORS

All experiments were run in our lab using an Intel(R)

Core(TM) i7-10750H CPU (2.60GHz CPU, 16GB RAM) and

an NVIDIA GeForce RTX 2070 (8G video memory). Model

training and testing were done in the PyTorch framework.

Both model training and testing are performed using GPUs to

accelerate the computation. The experimental conditions and

computer hardware information in this paper are shown in

Table 2.

TABLE II. EXPERIMENTAL CONDITIONS 

Experimental Environment Details 

Operating system 
Windows 

10 

Compiler 
Pycharm 
2022.1.3 

Programming language Python 3.6 

Deep Learning Framework 
Pytorch 

1.5.1 

GPU model 

NVIDIA 

GeForce 
RTX2070 

8GB 

CUDA version 12.0 

Central Processing Unit 

Intel(R) 

Core(TM) 

i7-10750H 
CPU 

Detection accuracy and detection speed are important 

indicators for measuring model performance. The indicators 
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of detection accuracy include precision rate(P), recall(R), 

average precision (AP), and mean average precision (mAP). 

The calculation formulas are expressed in (7)-(10). 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100% (7) 

𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100% (8) 

𝐴𝑃 = ∫  
1

0
𝑃(𝑅)𝑑𝑅 (9) 

𝑚𝐴𝑃 =
1

𝑛
∑  𝑛
𝑖=1 𝐴𝑃𝑖 (10) 

where TP is the number of correctly predicted positive 

samples, FP is the number of falsely predicted positive 

samples, FN is the number of wrongly predicted negative 

samples, n is the number of target categories to be detected, 

APi is the AP of the i-th target class, N is the number of images 

to be detected, and t is the detection time. 

B. RESULTS OF THE IMPROVED BACKBONE
EXPERIMENT

To verify the feature extraction ability of the

CSPResNet50dCA model, this paper conducted an aircraft

classification and recognition experiment using Dataset 1, and

trained the classification model using the training set before

classifying aircraft models on the test set. The control group

models were set up: ResNet50, Vision-Transformer-B,

ResNet50-CBAM, and CSPDarknet53. The evaluation metric

for this experiment is the precision rate (P).

The hyperparameters in this experiment are determined 

by combining the setting laws in the references and local 

multiple experiments. Considering the hardware conditions 

and training time, the sample batch size is set to 16 for both 

testing and training. The number of runs for this experiment is 

set to 40 epochs, and the test interval and the print result 

interval are set to 1 epoch. The optimizers used in the 

experiments are all adaptive moment estimation (Adam) 

optimizers, which include exponential decay in the learning 

rate update strategy. In the initial stage of training, a large 

learning rate is set to quickly reach the vicinity of the optimal 

solution, and then the learning rate is gradually reduced to 

avoid the drastic oscillations caused by a large learning rate. 

The dataset for transfer learning in this paper is ImageNet21k, 

and the weights of the model pre-trained in the ImageNet21k 

dataset are migrated to the aircraft image dataset for re-training, 

and then the weights are fine-tuned to complete this task. The 

experimental results are shown in Table 3. 

TABLE III. ACCURACY RATES OF DIFFERENT ALGORITHMIC MODELS 

Algorithm model 
precision 

(%) 
Epoch 

ResNet50 86.2 40 
ResNet50-CBAM 86.4 40 

Vision-Transformer-B 85.9 40 

CSPDarknet53 88.3 40 

CSPResNet50dCA 89.7 40 

The experimental results show that the accuracy of the 

CSPResNet50dCA model on Dataset 1 is significantly 

improved compared with other models. Compared with the 

backbone of yolov5, CSPDarknet53, the accuracy is improved 

by 1.4% and has better aircraft feature extraction ability. 

To verify and analyze the reason for the enhanced 

capability of the CA attention mechanism designed in this 

paper for small target aircraft features, the heat map of feature 

extraction of different models for the same aircraft image is 

drawn in Fig. 12. It can be seen by comparison that the 

CSPResNet50dCA network can ignore the useless 

background information and enhance the attention to small 

target aircraft profile information, so the location covered by 

the heat map is also more precise, and more feature 

information is extracted. 

(a)ResNet50 Heat Map (b)ResNet50-CBAM Heat Map 

(c)ResNet50-CA Heat Map (d)CSPDraknet53 heat map 

(e)CSPResNet50dCA Heat map 

Fig. 12. Heat map of different models 

C. RESULTS OF THE ABLATION EXPERIMENT

The improved methods proposed in this study are the addition

of the attention mechanism CA and the replacement of the

backbone with CSPResNet50dCA. To verify the effectiveness

of these improved methods, we designed ablation experiments:

(1) based on the original YOLOv5 algorithm, only one

improved method was added to verify the improvement effect

of each improved method on the original algorithm. (2) The

CA attention mechanism and improved backbone were freely

combined to select the optimal detection model. To compare

the performance of different models, Mean Average Precision

(mAP) and single image detection time (infer time) are used

as metrics in this paper.

The experiments were conducted on Dataset 2. The 

experimental results are shown in Table 4. 
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TABLE IV. RESULTS OF THE ABLATION EXPERIMENT 

model mAP@0.5 
Infer 

time/ms 

Yolov5 69.3 32.51 

CSPResNet50d-

Yolov5 
69.6 25.68 

CA-Yolov5 71.3 32.92 

CSPResNet50dCA-

Yolov5 
73.6 25.88 

The experimental results show that both adding the CA 

attention mechanism and replacing the backbone lead to an 

improvement in mAP. The CSPResNet50dCA-Yolov5 model 

achieves the highest 73.6% mAP. Adding the CA attention 

mechanism leads to a 2% improvement in mAP, indicating 

that the CA module improves the attention to small targets, 

fuses multi-scale information, and improves the detection 

effect of the network. Replacing the backbone with 

CSPResNet50d improves mAP by 0.3%, and fully fusing the 

residual structure and CSP structure can improve the 

localization effect of the model for small targets. Meanwhile, 

the improved model monitors 6.63ms faster than Yolov5. 

D. RESULTS OF THE COMPARATIVE EXPERIMENT

To further prove the superiority of the algorithm proposed

in this study, it was compared with the YOLOv5, YOLOv4, 

and YOLOv3 algorithms on Dataset 2. The experimental 

results are shown in Table 5. 

TABLE V. Performance comparison of the different 
algorithm models. 

model mAP@0.5 
Infer 

time/ms 

Yolov3 64.2 37.88 

Yolov4 66.9 42.68 

Yolov5 69.3 32.51 
CSPResNet50dCA-

Yolov5 
73.6 25.88 

The mAP@0.5 of YOLOv3, YOLOv4, YOLOv5, and 

YOLOv5-CSPResNet50dCA can reach 64.2%, 68.1%, 

69.3%,73.6%, respectively. Fig.13 shows the change curve of 

mAP during training. The initial accuracy rate of YOLOv5- 

CSPResNet50dCA was low during training, and the accuracy 

rate fluctuated considerably. However, the convergence speed 

was high, and the accuracy rate was the highest. The detection 

speed of YOLOv5-CSPResNet50dCA is higher than those of 

YOLOv3, YOLOv4, and YOLOv5.  

Fig. 14 shows the comparison of the loss curves of 

YOLOv5 and YOLOv5-CSPResNet50dCA during the 

training process. The loss value of YOLOv5- 

CSPResNet50dCA is 0.0026, which is 0.011 lower than that 

of the original YOLOv5. The model is further optimized. 

Fig. 13. mAP change curve(The gray curve represents YOLOv3, the red 
curve represents YOLOv4, the blue curve represents YOLOv5, and the 

green curve represents the model we proposed.) 

Fig. 14. Loss change curve 

The YOLOv5 mosaic data enhancement can be achieved 

by splicing four images, as shown in Fig. 15, which 

considerably enriches the background of the detected object. 

Table 4 shows that the performance of YOLOv5-

CSPResNet50dCA has been further improved compared with 

that of YOLOv5. The mAP of YOLOv5-CSPResNet50dCA 

is 73.6%, which is 9.4%, 6.7%, and 4.3% higher than those of 

YOLOv3, YOLOv4, and YOLOv5, respectively. The 

detection effect is shown in Fig. 16 and 17. 
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Fig. 15. Mosaic data enhancement during training 

Fig. 16. Batch detection effect 

Fig. 17. Detection effect 

IV. CONCLUSIONS AND FUTURE RESEARCH

The detection of aircraft targets is of great importance to both

military and civilian fields. In this paper, an aircraft detection

model based on the improved YOLOv5 network is established: 

Firstly, the original YOLOv5 backbone is replaced with the 

CSPResNet50d network to enhance the extraction capability 

of the network for aircraft features. Then the CA attention 

mechanism module is inserted into the model species for 

feature fusion to obtain more feature information of small 

target aircraft, and the network attention is focused on useful 

information, which improves the network performance at a 

smaller cost. Finally, the transfer learning strategy is used to 

reduce the computation of the model and improve the 

detection speed, while strengthening the generalization ability 

of the model. The improved model detects mAP up to 73.6%, 

and the detection time (infer time) of a single image is only 

25.88ms, which is better than the original YOLOv5 model and 

other models. The improved network model not only has a 

high detection rate but also has a significant improvement in 

the recognition rate of small target aircraft. The model 

improvements studied in this paper are designed to maintain a 

balance between detection performance and detection speed to 

meet the demand for real-time detection of different types of 

aircraft. The research is also applicable to other military and 

civilian target detection fields to provide technical references 

for military decision-making and civil aviation applications. 

However, the improved YOLOv5 model has limitations, 

for example, missed and incorrect detection of small target 

aircraft still exists. This is due to the difficulty in acquiring 

aircraft image datasets as well as the uneven quality. The poor 

quality of the acquired images is caused by factors such as 

weather, lighting, and the shooting environment. In the future, 

we can try to use an improved generative adversarial network 

to generate more images under bad weather and lighting 

conditions from existing aircraft images, and then use them for 

model training to enhance the robustness of the model and 

improve the accuracy rate. In addition, we can try to replace 

the backbone with a more lightweight model to reduce the 

number of model parameters. 
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